REAL & COMPLEX ANALYSIS PRELIMINARY EXAMINATION, AUGUST 2013, MATHEMATICS, UNIVERSITY OF CINCINNATI

Complex Analysis

- 1. Use the contour $[-R, R] + [R, R + \pi i] + [R + \pi i, -R + \pi i] + [-R + \pi i, -R]$ (here $R \in \mathbb{R}$) to evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{e^x + e^{-x}} dx.$
- 2. Suppose f is an entire function. Prove that $\sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!}$ converges locally uniformly in \mathbb{C} where $f^{(n)}$ denotes the nth derivative of f.
- 3. Let $f(z) = e^{2z}$. Find all connected sets containing z = i on which f is one-to-one.
- 4. Find the Laurent series for the following functions in the indicated region. Justify your answers. (a) $f(z) = \frac{1}{(z-1)(z-2)}$, 1 < |z| < 2. (b) $g(z) = \frac{1}{(z-1)^2} - \frac{1}{(z-2)^2}$, 1 < |z| < 2.

Real Analysis

1. (a) Let (X, \mathcal{M}, μ) be a *finite* measure space. Without using the Cauchy–Schwarz, Hölder, or Jensen inequalities, prove that if f^2 is integrable on (X, \mathcal{M}, μ) , then so is f.

Is the same necessarily true without the condition $\mu(X) < \infty$? Prove or give a counterexample.

(b) Under the assumptions of part (a), define the following two finite measures on (X, \mathcal{M}) :

$$\nu_1(E) = \int_E |f| \, d\mu, \ E \in \mathcal{M}; \quad \nu_2(E) = \int_E |f|^2 \, d\mu, \ E \in \mathcal{M}$$

Is it true or false that $\nu_1 \ll \nu_2$? Justify. Is it true or false that $\nu_2 \ll \nu_1$? Justify.

- 2. Let $\{f_n\}$ be a sequence of real valued measurable functions on \mathbb{R} such that $f_1 \geq f_2 \geq \cdots \geq f_n \geq \cdots \geq 0$. Let $f(x) = \inf_{f} \{f_n(x) | n \in \mathbb{N}\}, x \in \mathbb{R}$.
 - a) Show that if f_1 is integrable, then $\int f_n \to \int f$.
 - b) Show that if f_1 is not integrable, then the conclusion in a) may no longer hold.
- 3. (a) Define the total variation of a function $f : [0,1] \to \mathbb{R}$ and the absolute continuity of f. (b) Suppose $f : [0,1] \to \mathbb{R}$ and is absolutely continuous and define g by

$$g(x) = \int_0^1 f(xy) dy.$$

Show that g is absolutely continuous.

4. Suppose that f is a Lebesgue integrable, decreasing function on $(0, \infty)$. Prove that

$$\lim_{x \to \infty} x f(x) = 0.$$