REAL \& COMPLEX ANALYSIS PRELIMINARY EXAMINATION, AUGUST 2013, MATHEMATICS, UNIVERSITY OF CINCINNATI

Complex Analysis

1. Use the contour $[-R, R]+[R, R+\pi i]+[R+\pi i,-R+\pi i]+[-R+\pi i,-R]$ (here $R \in \mathbb{R}$) to evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{e^{x}+e^{-x}} d x
$$

2. Suppose f is an entire function. Prove that $\sum_{n=0}^{\infty} \frac{f^{(n)}(z)}{n!}$ converges locally uniformly in \mathbb{C} where $f^{(n)}$ denotes the $n^{\text {th }}$ derivative of f.
3. Let $f(z)=e^{2 z}$. Find all connected sets containing $z=i$ on which f is one-to-one.
4. Find the Laurent series for the following functions in the indicated region. Justify your answers.
(a) $f(z)=\frac{1}{(z-1)(z-2)}, 1<|z|<2$.
(b) $g(z)=\frac{1}{(z-1)^{2}}-\frac{1}{(z-2)^{2}}, 1<|z|<2$.

Real Analysis

1. (a) Let (X, \mathcal{M}, μ) be a finite measure space. Without using the Cauchy-Schwarz, Hölder, or Jensen inequalities, prove that if f^{2} is integrable on (X, \mathcal{M}, μ), then so is f.

Is the same necessarily true without the condition $\mu(X)<\infty$? Prove or give a counterexample.
(b) Under the assumptions of part (a), define the following two finite measures on (X, \mathcal{M}) :

$$
\nu_{1}(E)=\int_{E}|f| d \mu, E \in \mathcal{M} ; \quad \nu_{2}(E)=\int_{E}|f|^{2} d \mu, E \in \mathcal{M}
$$

Is it true or false that $\nu_{1} \ll \nu_{2}$? Justify. Is it true or false that $\nu_{2} \ll \nu_{1}$? Justify.
2. Let $\left\{f_{n}\right\}$ be a sequence of real valued measurable functions on \mathbb{R} such that $f_{1} \geqq f_{2} \geqq \cdots \geqq f_{n} \geqq \cdots \geqq 0$. Let $f(x)=\inf \left\{f_{n}(x) \mid n \in \mathbb{N}\right\}, x \in \mathbb{R}$.
a) Show that if f_{1} is integrable, then $\int f_{n} \rightarrow \int f$.
b) Show that if f_{1} is not integrable, then the conclusion in a) may no longer hold.
3. (a) Define the total variation of a function $f:[0,1] \rightarrow \mathbb{R}$ and the absolute continuity of f. (b) Suppose $f:[0,1] \rightarrow \mathbb{R}$ and is absolutely continuous and define g by

$$
g(x)=\int_{0}^{1} f(x y) d y
$$

Show that g is absolutely continuous.
4. Suppose that f is a Lebesgue integrable, decreasing function on $(0, \infty)$. Prove that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

