Statistical Methods Prelim Exam

1:00 pm - 3:30 pm, Friday, May 5, 2023

UMVUE: uniformly minimum variance unbiased estimator; i.i.d.: identically and independently distributed;
UMP: uniformly most powerful; CRLB: Cramér-Rao Lower bound; LRT: Likelihood Ratio Test;
r.s.: random sample

- 1. Suppose that X_1, X_2, \ldots, X_n be i.i.d $N(\mu_1, \sigma_1^2)$, and Y_1, Y_2, \ldots, Y_n be i.i.d $N(\mu_2, \sigma_2^2)$ where $\mu_1, \mu_2 \in (-\infty, \infty)$, $\sigma_1^2 > 0$, and $\sigma_2^2 > 0$. Assume also and that X_i 's and Y_i 's, for i = 1, ..., n, are independent.
 - (a) Find the LRT statistic T based on X_i 's and Y_i 's (i = 1, ..., n), for testing the null hypothesis $H_0: \sigma_1^2 = \sigma_2^2$ versus the alternative hypothesis $H_1: \sigma_1^2 \neq \sigma_2^2$. Give as simple an expression as possible for T.
 - (b) Give an exact critical region of size α for the above test based on the suitable percentiles of a known distribution. Show work to fully justify your answer and identify the known distribution.
- 2. Let X_1, \ldots, X_n be a r.s. from a normal population as $\mathcal{N}(\theta, \sigma^2), \sigma^2 > 0$ is known, and suppose that the hypotheses to be tested are

$$H_0: \theta \leq 0$$
 versus $H_1: \theta > 0$

- (a) Derive a UMP test of size α for testing the above hypotheses.
- (b) Assume a prior distribution on θ is $\mathcal{N}(0, \tau^2)$, where τ^2 is known. Calculate the posterior probability that H_0 is true, i.e., $P(\theta \leq 0 | x_1, \ldots, x_n)$.
- (c) Show that $\lim_{\tau^2 \to \infty} P(\theta \le 0 | x_1, \dots, x_n) = p$ -value for testing the hypotheses.
- (d) For the special case $\sigma^2 = \tau^2 = 1$ and for values $\overline{x} > 0$, compare the values of $P(\theta \le 0|x_1, \dots, x_n)$ and the p-value of the test derived in Part (a) where \overline{x} denotes the sample mean. Show that $P(\theta \le 0|x_1, \dots, x_n)$ is always greater than the p-value.
- 3. Let X_1, \ldots, X_n be a r.s. from the Poisson (θ) distribution truncated on the left at 0, with the sample space be the positive integers, $\mathbf{X} = \{1, 2, 3, \ldots\}$, and the probabality mass function as $P(X = x) = e^{-\theta} \theta^x / [(1 e^{-\theta})x!]$.
 - (a) Derive the CRLB of the variance of unbiased estimators of θ .
 - (b) Show that the CRLB is not attained by the UMVU estimator of θ .
 - (c) Suppose that a random variable X (note: here n = 1) has the truncated Poisson(θ) distribution. Denote $\tau(\theta) = \exp(-\theta)$, the probability mass at zero for the untruncated Poisson distribution. Find the UMVUE of $\tau(\theta)$. Note n = 1 here. (Hint: The correct answer looks pretty silly, and is not a favorable choice for estimator in practice!)
- 4. Let $X_1, ..., X_n$ be a r.s. from a population with its density $f(x; \theta) = \theta(\theta + 1)x^{\theta 1}(1 x), \theta > 0$ where 0 < x < 1.
 - (a) Show that $T_n = 2\overline{X}/(1-\overline{X})$ is a method of moments estimate of θ where \overline{X} denotes the sample mean.
 - (b) Show that

$$\frac{\sqrt{n}(T_n - \mu_n(\theta))}{\sigma_n(\theta)} \stackrel{d}{\to} N(0, 1)$$

where $\mu_n(\theta) = \theta$, $\sigma_n^2(\theta) = \theta(\theta + 2)^2/2(\theta + 3)$ and \xrightarrow{d} denotes "convergence in distribution".

(c) Show that T_n is not asymptotically efficient by calculating the information bound.