TOPOLOGY PRELIM EXAM, MAY 2023

To pass the prelim exam you should get at least 4 of the 5 questions solved correctly.

If you use a known theorem, or a similar result from a textbook, be sure to explicitly indicate so. Any other facts used must be proven. Proofs, or counter examples, are required for all problems.

- (1) Prove that the set of rational numbers is not the intersection of a countable collection of open subsets of \mathbb{R} , where \mathbb{R} is equipped with the Euclidean topology.
- (2) Define a topology \mathcal{T} on \mathbb{R} by the rule that S is open if and only if S is empty or $\mathbb{R}\setminus S$ is finite.
 - (a) Is \mathcal{T} a topology?
 - (b) Is $(\mathbb{R}, \mathcal{T})$ Hausdorff?
 - (c) Is $(\mathbb{R}, \mathcal{T})$ compact?
 - (d) Let $f: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ be any polynomial function. Prove that f is continuous.
- (3) Let X be a regular Hausdorff topological space and $A \subset X$. Let Y = X/A, the quotient space defined by the equivalence relation on X given by x_1 is equivalent to x_2 if and only if either $x_1 = x_2$ or $x_1, x_2 \in A$. Prove that Y is Hausdorff if and only if A is closed.
- (4) Let X be a path-connected topological space and $x_0 \in X$. Let A be a closed subset of X such that $x_0 \in A$.
 - (a) Give the definition of what it means to say that A is a deformation retract of X.
 - (b) Suppose that A is a deformation retract of X. Prove that $\Pi_1(X, x_0)$ is group isomorphic to $\Pi_1(A, x_0)$.
 - (c) Compute the fundamental group of the set $A \times [0, 1]$ where

$$A = ([0,2] \times \{0,1\}) \bigcup (\{0,1,2\} \times [0,1]).$$

Here the set is equipped with the Euclidean subspace topology. **Hint:** First draw a picture what this set looks like.

(5) Let (X, \mathcal{T}) be a connected, locally connected topological space, and $f : X \to \mathbb{R}$ be continuous. Prove that if f(X) is a discrete subset of \mathbb{R} , then f is constant. Here by a discrete subset of \mathbb{R} we mean that for each point z in that set there is an open (in the Euclidean topology) set $W \subset \mathbb{R}$ such that z is the only point from that subset belonging to W.