In this exam \mathbb{R} denotes the field of all real numbers; \mathbb{R}^{d} is the d-dimensional Euclidean space with the usual norm $\|x\|=\left(\sum_{k=1}^{d} x_{k}^{2}\right)^{1 / 2}$. Proofs or counterexamples are required for all problems.

1. Let f be continuous on $[0,1]$ and differentiable on $(0,1)$. Suppose $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq M$ for some $M>0$ and all $x \in(0,1)$.
(a) Prove that $|f(x)| \leq M$ for $x \in[0,1]$.
(b) Prove that

$$
\left|(f(x))^{2}-(f(y))^{2}\right| \leq 2 M^{2}|x-y|
$$

for all $x, y \in[0,1]$.
2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a monotone increasing function.
(a) Give a reasonable mathematical definition of what it means to say $\lim _{x \rightarrow \infty} f(x)=a$ with a a real number.
(b) Prove that if the improper integral $\int_{0}^{\infty} f(x) d x$ exists, then $\lim _{x \rightarrow \infty} f(x)=0$.
(c) Is the converse of the statement in part (b) true? Prove or give a counterexample.
3. Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R}^{d} such that for all $n \geq 1$,

$$
\left\|x_{n+1}-x_{n}\right\| \leq \frac{1}{n^{2}}
$$

Prove that the sequence $\left\{x_{n}\right\}$ is Cauchy.
4. Prove that the function $g(x)=\frac{1}{1+x}$ is uniformly continuous on $[0, \infty)$.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear injective map. Show that there exists a constant $m>0$ such that $\|T(x)\| \geq m\|x\|$ for all $x \in \mathbb{R}^{n}$.
6. Let v_{1}, \ldots, v_{m} be linearly independent elements in a vector space V, and let $w=\frac{1}{m}\left(v_{1}+\ldots+v_{m}\right)$.
(a) Show that the list of vectors $\left\{v_{i}-w\right\}_{i=2}^{m}$ is linearly independent.
(b) Show that the list of vectors $\left\{v_{i}-w\right\}_{i=1}^{m}$ is not linearly independent.
7. Let V be a vector space and let T be a linear map on V. Suppose $\operatorname{dim} \operatorname{null}\left(T^{2}\right)=5$. Prove that $\operatorname{dim} \operatorname{null}(T) \geq 3$.
8. Let V be a finite-dimensional inner product space of dimension n, with the inner product of vectors u and v in V denoted by $u \cdot v$. Let $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of V.
(a) For each $i=2, \ldots, n$ let

$$
x_{i}^{\prime}=x_{i}-\frac{x_{i} \cdot x_{1}}{x_{1} \cdot x_{1}} x_{1}
$$

Prove that $x_{i}^{\prime} \cdot x_{1}=0$ and that $\mathcal{B}^{\prime}:=\left\{x_{1}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ is a basis of V.
(b) Prove that V has a basis consisting of pairwise orthogonal vectors.

