In this exam \mathbb{R} denotes the field of all real numbers; \mathbb{R}^d is the *d*-dimensional Euclidean space with the usual norm $||x|| = \left(\sum_{k=1}^d x_k^2\right)^{1/2}$. Proofs or counterexamples are required for all problems.

- 1. Let f be continuous on [0, 1] and differentiable on (0, 1). Suppose f(0) = 0 and $|f'(x)| \le M$ for some M > 0 and all $x \in (0, 1)$.
 - (a) Prove that $|f(x)| \le M$ for $x \in [0, 1]$.
 - (b) Prove that

$$\left| \left(f(x) \right)^2 - \left(f(y) \right)^2 \right| \le 2M^2 |x - y|$$

for all $x, y \in [0, 1]$.

- 2. Let $f:[0,\infty) \to \mathbb{R}$ be a monotone increasing function.
 - (a) Give a reasonable mathematical definition of what it means to say $\lim_{x\to\infty} f(x) = a$ with a real number.
 - (b) Prove that if the improper integral $\int_0^\infty f(x) dx$ exists, then $\lim_{x\to\infty} f(x) = 0$.
 - (c) Is the converse of the statement in part (b) true? Prove or give a counterexample.
- 3. Let $\{x_n\}$ be a sequence in \mathbb{R}^d such that for all $n \ge 1$,

$$||x_{n+1} - x_n|| \le \frac{1}{n^2}.$$

Prove that the sequence $\{x_n\}$ is Cauchy.

- 4. Prove that the function $g(x) = \frac{1}{1+x}$ is uniformly continuous on $[0, \infty)$.
- 5. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear injective map. Show that there exists a constant m > 0 such that $||T(x)|| \ge m ||x||$ for all $x \in \mathbb{R}^n$.
- 6. Let $v_1, ..., v_m$ be linearly independent elements in a vector space V, and let $w = \frac{1}{m} (v_1 + ... + v_m)$.
 - (a) Show that the list of vectors $\{v_i w\}_{i=2}^m$ is linearly independent.
 - (b) Show that the list of vectors $\{v_i w\}_{i=1}^m$ is not linearly independent.
- 7. Let V be a vector space and let T be a linear map on V. Suppose dim null $(T^2) = 5$. Prove that dim null $(T) \ge 3$.
- 8. Let V be a finite-dimensional inner product space of dimension n, with the inner product of vectors u and v in V denoted by $u \cdot v$. Let $\mathcal{B} = \{x_1, ..., x_n\}$ be a basis of V.
 - (a) For each i = 2, ..., n let

$$x_i' = x_i - \frac{x_i \cdot x_1}{x_1 \cdot x_1} x_1$$

Prove that $x'_i \cdot x_1 = 0$ and that $\mathcal{B}' := \{x_1, x'_2, \dots, x'_n\}$ is a basis of V.

(b) Prove that V has a basis consisting of pairwise orthogonal vectors.