PRELIMINARY EXAM
 Partial Differential Equations

Full Name:
 ID Number:

Instruction: Choose only five (out of six) problems to do. Each problem is worth 20 points.

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	100
Score:							

1. [20 points] Let $U \subset \mathbb{R}^{n}, n \geq 2$, be open, bounded, and connected with C^{1} boundary. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a nonlinear function. Consider the boundary-value problem

$$
\left\{\begin{aligned}
\Delta u & =F(u) & & \text { in } U, \\
u & =0 & & \text { on } \partial U .
\end{aligned}\right.
$$

Assume that $u \mapsto \frac{F(u)}{u}$ is strictly increasing for all $u>0$. Show that it is impossible to have two solutions u, v of the boundary-value problem above satisfying $u(x)>v(x)>0$ for all $x \in U$.
2. [20 points] Let $U \subset \mathbb{R}^{n}, n \geq 2$, be open, bounded, and connected with C^{1} boundary. Consider the boundary-value problem

$$
\left\{\begin{aligned}
\Delta u & =a(x) u+f(x) & & \text { in } U, \\
u & =h(x) & & \text { on } \partial U .
\end{aligned}\right.
$$

The functions $a(x), f(x)$, and $h(x)$ are all continuous in their domains; $a(x)>1$ in $U . v$ is the outward unit normal on ∂U.
(a) Prove that a smooth solution to this problem is unique.
(b) Recall that $a(x)>1$ in U. Suppose additionally that $f(x) \geq 0$ in U and $h(x)<0$ on ∂U. Prove that $u \leq 0$ in \bar{U}.
3. [20 points] Solve the following problems.
(a) Let u and v be classical solutions of $u_{t}-u_{x x}=f(x, t)$ and $v_{t}-v_{x x}=g(x, t)$, respectively, on $\Omega=\{(x, t) \mid 0<x<L, t>0\}$ for some $L>0$ fixed. Assume that

$$
\begin{cases}f(x, t) \leq g(x, t) & \text { for all }(x, t) \in \Omega, \\ & u(x, 0) \leq v(x, 0) \\ \text { for } 0<x<L, \\ u(0, t) \leq v(0, t) \quad \text { and } \quad u(L, t) \leq v(L, t) & \text { for } t>0 .\end{cases}
$$

Show that $u \leq v$ in Ω.
(b) Suppose that v is smooth and satisfies

$$
v_{t}-v_{x x} \geq \sin (x) \quad \text { in } Q=\{(x, t) \mid 0<x<\pi, t>0\} .
$$

Moreover, assume that $v(0, t) \geq 0$ and $v(\pi, t) \geq 0$ for all $t \geq 0$ and $v(x, 0) \geq \sin (x)$ for $0 \leq x \leq \pi$.
Show that $v(x, t) \geq\left(1-\mathrm{e}^{-t}\right) \sin (x)$ in Q.
4. [20 points] Let $T>0$ be fixed. Consider the following initial-boundary-value problem for the Kawahara equation

$$
\left\{\begin{align*}
u_{t}+u u_{x}+u_{x x x}+u_{x}+u_{x x x x x} & =0, & & x \in(0,1), \quad t \in(0, T), \tag{1}\\
u(x, 0) & =\phi(x) & & x \in(0,1), \\
u(0, t)=h_{1}(t), u(1, t) & =h_{2}(t), & & t \in(0, T), \\
u_{x}(0, t)=h_{3}(t), u_{x}(1, t) & =h_{4}(t), & & t \in(0, T), \\
u_{x x}(0, t) & =h_{5}(t), & & t \in(0, T) .
\end{align*}\right.
$$

where ϕ and $h_{j}, j=1,2, \ldots, 5$, are smooth functions. Show that the problem (1) admits only one smooth solution.
Hint: Grönwall's inequality states that if $y^{\prime}(t) \leq g(t) y(t)$ for $t \geq 0$, then $y(t) \leq y(0) \mathrm{e}^{\int_{0}^{t} g(\tau) \mathrm{d} \tau}$.
Turn the page for problems 5 and 6.
5. [20 points] Use the method of characteristics to find the solution $u(x, t)$ of the Cauchy problem

$$
\left\{\begin{aligned}
x u_{x}-u_{y} & =u-1, & & -\infty<x<\infty, \quad y>0 \\
u(x, 0) & =\sin (x), & & -\infty<x<\infty
\end{aligned}\right.
$$

6. [20 points] Find the entropy solution of the following problem

$$
\left\{\begin{aligned}
u_{t}+u u_{x} & =0, & & -\infty<x<\infty, \quad t>0 \\
u(x, 0) & =g(x), & & -\infty<x<\infty
\end{aligned}\right.
$$

where

$$
g(x)= \begin{cases}1, & x<-1 \\ 0, & -1<x<1 \\ 1, & 1<x\end{cases}
$$

