Ordinary Differential Equations Preliminary Exam May 2019

1. Suppose that A is an $n \times n$ matrix that satisfies $A^{2}=-A$.
(a) Find an explicit form for $e^{A t}$ in terms of A, but without any series involving A.
(b) Determine the stability of the origin of the linear system $\dot{x}=A x$.
2. Consider the following linear system of equations:

$$
\dot{\mathrm{x}}=\left[\begin{array}{cc}
-1 & 4 \\
4 & -1
\end{array}\right] \mathrm{x}, \quad \mathrm{x}(\mathbf{0})=\mathbf{x}_{\mathbf{0}} .
$$

(a) Solve the linear system.
(b) Find the stable, unstable, and center subspaces E^{s}, E^{u}, and E^{c}.
(c) Sketch the phase portrait.
3. Consider the following system:

$$
\begin{aligned}
\dot{x} & =-y+x\left(\mu-x^{2}-y^{2}\right), \\
\dot{y} & =x+y\left(\mu-x^{2}-y^{2}\right) .
\end{aligned}
$$

Determine the equilibria and their stability. Draw the bifurcation diagram.
(Hint: rewrite the system using polar coordinates.)
4. Let $V(x, y)=x^{2}(x-1)^{2}+y^{2}$. Consider the dynamical system

$$
\begin{aligned}
& \frac{d x}{d t}=-\frac{\partial V}{\partial x} \\
& \frac{d y}{d t}=-\frac{\partial V}{\partial y} .
\end{aligned}
$$

(a) Find the critical points of this system and determine their linear stability.
(b) Show that V decreases along any solution of the system.
(c) Use (b) to prove that if $z_{0}=\left(x_{0}, y_{0}\right)$ is an isolated minimum of V then z_{0} is an asymptotically stable equilibrium.

