

MATHEMATICS QUALIFYING EXAM

MAY, 7, 2019

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space.
Unless explicitly stated, proofs, or counterexamples, are required for all problems.

1. Prove that for a subset $E \subset[0,1]$ the following conditions are equivalent:
(i) Every continuous function $f: E \rightarrow[0, \infty)$ is bounded.
(ii) E is a closed set.
2. Let $\left(f_{n}\right)$ be a sequence of continuous functions on $D \subset \mathbb{R}^{p}$ to \mathbb{R}^{q} such that $\left(f_{n}\right)$ converges uniformly to f on D, and let $\left(a_{n}\right)$ be a sequence of points in D that converges to $a \in D$. Prove that $\left(f_{n}\left(a_{n}\right)\right)$ converges to $f(a)$.
3. Let f be a differentiable function on the interval $(-2,2)$ such that f^{\prime} is continuous on this interval. Prove that

$$
\lim _{h \rightarrow 0} \int_{0}^{1}\left(\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right) d x=0
$$

4. Find the largest set $D \subset \mathbb{R}$ such that for all $x \in D$ the series $\sum_{n=2}^{\infty} \frac{2^{n}}{n-1}(3 x-1)^{n}$ converges.
5. Let P_{3} be the collection of all polynomials in x with coefficients in \mathbb{R} with degree at most 3 , and let $T: P_{3} \rightarrow P_{3}$ be the linear transformation given by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3} .
$$

(a) Find a basis for P_{3} with respect to which the matrix representing T is diagonal.
(b) Determine the kernel and the image of T.
6. (a) Define what it means to say that vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent.
(b) Let A be an $n \times n$ matrix with real entries. If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are eigenvectors of A with distinct real eigenvalues, use the definition to show that v_{1}, \ldots, v_{k} are linearly independent. Hint: Use mathematical induction.
7. Let W be a subspace of an inner product space $(V,\langle\rangle$,$) . If W$ is spanned by vectors $\left\{v_{1}, \ldots, v_{k}\right\}$, show that the orthogonal complement W^{\perp} is equal to $\bigcap_{j=1}^{k}\left\{v_{j}\right\}^{\perp}$.
8. Let f be the mapping of \mathbb{R}^{2} into \mathbb{R}^{2} that sends the point (x, y) into the point (u, v) given by

$$
u=x^{2}-y^{2}, v=3 x y
$$

Show that f is locally one-to-one at every point except $(0,0)$, but f is not one-to-one on \mathbb{R}^{2}.

