REAL ANALYSIS PRELIMINARY EXAM MAY 2019

Time allowed: 2 hours 30 minutes.

Answer all problems and fully justify your work. Throughout the exam m^n denotes Lebesgue measure on \mathbb{R}^n .

QUESTION 1

Let $E := \bigcup_{n=1}^{\infty} (n - \frac{1}{2^n}, n + \frac{1}{2^n})$ and define the function $f: [0, \infty) \to \mathbb{R}$ by $f(x) := m([0, x] \cap E)$.

- (1) Prove that f is an absolutely continuous function on the interval [0, a] for any a > 0.
- (2) Find the largest set on which the derivative f' exists. Compute f' when it exists.

QUESTION 2

Recall that a measure space (X, \mathcal{M}, μ) is said to be finite if $\mu(X) < \infty$ and is σ -finite if there exists a sequence $X_n \in \mathcal{M}$ with $\mu(X_n) < \infty$ for all n and $\bigcup_{n=1}^{\infty} X_n = X$.

- (1) Give an example of a measure space which is σ -finite but not finite.
- (2) Give an example of a measure space which is not σ -finite.
- (3) Prove that (X, \mathcal{M}, μ) is σ -finite if and only if there exists a function $f \in L^1(X, \mathcal{M}, \mu)$ such that $0 < f(x) < \infty$ for all $x \in X$.

QUESTION 3

Let $f: [0,1] \to [0,\infty)$ be a Lebesgue measurable function. Show that $\lim_{n \to \infty} \int_0^1 \frac{f^n}{2+f^n} \, \mathrm{d}m = \frac{1}{3}m(\{x: f(x) = 1\}) + m(\{x: f(x) > 1\}).$

QUESTION 4

- (1) Let $h: \mathbb{R} \to \mathbb{R}$ be continuous and $g: \mathbb{R}^2 \to \mathbb{R}$ be measurable. Show that the composition $h \circ g: \mathbb{R}^2 \to \mathbb{R}$ is measurable.
- (2) Let *E* be a Lebesgue measurable subset of [0, 1] and let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) := \sin(\pi y \chi_E(x))$. Explain why the integral $\iint_{[0,1]\times[0,1]} f \, \mathrm{d}m^2$ is defined and compute it.