Topology Preliminary Examination SS2019 University of Cincinnati Department of Mathematical Sciences

- 1. Which pairs of topological spaces are homeomorphic? Justify.
 - (a) \mathbb{R} and \mathbb{R}^3
 - (b) The plane and the open unit disc centered at (1, 1)
 - (c) The plane and the closed unit disc centered at (1, 1)
 - (d) $\mathbb{R} \setminus \{0, 1\}$ and $\mathbb{R} \setminus \{0\}$
 - (e) $\mathbb{R}^2 \setminus \{(0,0), (1,1)\}$ and $\mathbb{R} \setminus \{(0,0)\}$
 - (f) $\prod_{\mathbb{N}} [-n, n] \subset \prod_{\mathbb{N}} \mathbb{R}$, both with the product topology.
- 2. Let $p: X \to Y$ be a closed map such that $p^{-1}(\{y\})$ is compact for each $y \in Y$. Show that if Y is compact, then X is compact.
- 3. (a) What does it mean to say that a space X is connected?
 - (b) What does it mean to say that a space is path connected?
 - (c) Give an example of a connected, but not path connected space.
 - (d) Prove: If $U \subset \mathbb{R}^n$ is open and connected, then U is path connected.
- 4. Recall that a space is *Lindelöf* if every open cover contains a countable subcover. Show that every regular *Lindelöf* space is normal.

Recall a topological space X is regular means: Points are closed and, given a closed set and a point not in it, they can be separated by open sets.

- 5. $A \subset X$ is a retract if there exists a continuous $f : X \to A$ (called a retraction) so that for each $a \in A$, f(a) = a.
 - (a) If $A \subset X$ is a retract and $a^* \in A$, show that the homomorphism

$$h: \pi_1(X, a^*) \to \pi_1(A, a^*)$$

induced by the retraction is onto.

(b) Show that $S^1 = \{x \in R^2 : |x| = 1\}$ is not a retract of $D^2 = \{x \in R^2 : |x| \le 1\}.$