Complex Analysis Prelim Exam UC Department of Math August 2019

 \mathbb{C} is the field of complex numbers z = x + iy, \mathbb{R} the field of real numbers, \mathbb{D} the open unit disk, and $\hat{\mathbb{C}}$ the Riemann sphere (aka, extended complex plane)

If you use a known theorem, or a similar result from a textbook, be sure to explicitly indicate so. Any other facts used must be proven. Proofs, or counter examples, are required for all problems.

- (1) Find the Laurent series of the function $\frac{1}{z(z-1)}$ for the region 2 < |z+2| < 3.
- (2) Let f and g be non-constant and holomorphic in $\mathbb{D} \setminus \{0\}$. Define h(z) for $z \in \mathbb{D} \setminus \{0\}$ by h(z) := f(z)g(z).
 - (a) Explain why h has an isolated singularity at z = 0.
 - (b) Discuss the nature of the isolated singularity z = 0 for h. (When is it: removable? a pole? an essential singularity?)
- (3) Let $T(z) = \frac{z}{z+1}$.
 - (a) Find the image $T(\hat{\mathbb{R}})$ where $\hat{\mathbb{R}}$ is the extended real line in $\hat{\mathbb{C}}$.
 - (b) Find the image T(K) where K is the unit circle |z| = 1.
 - (c) Find the image T(L) where L is the line $\Re \mathfrak{e}(z) = 1$.
- (4) Let f be holomorphic in the annulus $A := \{1 < |z| < 2\}$. Suppose there is a sequence (p_n) of polynomials that converges locally uniformly in A to f. Prove that there is a function F that is holomorphic in |z| < 2 with F|A = f.
- (5) Compute the integral

$$\int_{-\infty}^{\infty} \frac{\cos(2x)}{1+x^4} dx$$

(6) How many roots does the polynomial $f(z) = z^5 + 2z^2 + 1$ have in the annulus $\{z \in \mathbb{C} : \frac{1}{2} < |z| < 2\}$?