Complex Analysis Prelim Exam
 UC Department of Math
 August 2019

\mathbb{C} is the field of complex numbers $z=x+i y, \mathbb{R}$ the field of real numbers, \mathbb{D} the open unit disk, and $\widehat{\mathbb{C}}$ the Riemann sphere (aka, extended complex plane)

If you use a known theorem, or a similar result from a textbook, be sure to explicitly indicate so. Any other facts used must be proven. Proofs, or counter examples, are required for all problems.
(1) Find the Laurent series of the function $\frac{1}{z(z-1)}$ for the region $2<|z+2|<3$.
(2) Let f and g be non-constant and holomorphic in $\mathbb{D} \backslash\{0\}$. Define $h(z)$ for $z \in \mathbb{D} \backslash\{0\}$ by $h(z):=f(z) g(z)$.
(a) Explain why h has an isolated singularity at $z=0$.
(b) Discuss the nature of the isolated singularity $z=0$ for h. (When is it: removable? a pole? an essential singularity?)
(3) Let $T(z)=\frac{z}{z+1}$.
(a) Find the image $T(\hat{\mathbb{R}})$ where $\hat{\mathbb{R}}$ is the extended real line in $\hat{\mathbb{C}}$.
(b) Find the image $T(K)$ where K is the unit circle $|z|=1$.
(c) Find the image $T(L)$ where L is the line $\Re \mathfrak{e}(z)=1$.
(4) Let f be holomorphic in the annulus $A:=\{1<|z|<2\}$. Suppose there is a sequence $\left(p_{n}\right)$ of polynomials that converges locally uniformly in A to f. Prove that there is a function F that is holomorphic in $|z|<2$ with $F \mid A=f$.
(5) Compute the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (2 x)}{1+x^{4}} d x
$$

(6) How many roots does the polynomial $f(z)=z^{5}+2 z^{2}+1$ have in the annulus $\left\{z \in \mathbb{C}: \frac{1}{2}<\right.$ $|z|<2\} ?$

