Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q1 is 35 points; Q2 is 30 points, and Q3 is 35 points.

1. Assume each $Y_{i}(i=1, \ldots, n)$ can be modeled by the following linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}+\epsilon_{i}
$$

where $\boldsymbol{\varepsilon}=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right) \sim N(\mathbf{0}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{V}, \sigma^{2}>0$, and

$$
\mathbf{V}=\left(\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \cdots & 1
\end{array}\right)=(1-\rho) \mathbf{I}+\rho \mathbf{J}
$$

here, \mathbf{I} is an $n \times n$ identity matrix; \mathbf{J} is an $n \times n$ matrix whose elements are all 1 s .
The 'centered form' of the model can be written as

$$
Y_{i}=\beta_{0}+\beta_{1}\left(X_{i 1}-\bar{X}_{1}\right)+\cdots+\beta_{p}\left(X_{i p}-\bar{X}_{p}\right)+\epsilon_{i}
$$

where $\bar{X}_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i j} ; j=1, \ldots, p$.
Define $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\prime} ; \boldsymbol{\beta}_{1}=\left(\beta_{1}, \ldots, \beta_{n}\right)^{\prime} ; \mathbf{j}$ is an n-dimensional vector of 1 s ; $\alpha=\beta_{0}+\beta_{1} \bar{X}_{1}+\cdots+\beta_{p} \bar{X}_{p} ; \mathbf{X}_{c}=\left(\mathbf{I}-\frac{1}{n} \mathbf{J}\right) \tilde{\mathbf{X}}$ with

$$
\tilde{\mathbf{X}}=\left(\begin{array}{cccc}
X_{11} & X_{12} & \cdots & X_{1 p} \\
X_{21} & X_{22} & \cdots & X_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n 1} & X_{n 2} & \cdots & X_{n p}
\end{array}\right)
$$

a. Show that the following is equivalent to the 'centered' form of the model:

$$
\mathbf{Y}=\left(\begin{array}{ll}
\mathbf{j}, & \mathbf{X}_{c}
\end{array}\right)\binom{\alpha}{\boldsymbol{\beta}_{1}}+\boldsymbol{\varepsilon}
$$

b. Let $\mathbf{X}=\left(\mathbf{j}, \mathbf{X}_{c}\right)$ and $\boldsymbol{\beta}=\binom{\alpha}{\boldsymbol{\beta}_{1}}$. Derive the generalized least squares (GLS) estimator for $\boldsymbol{\beta}$ in terms of \mathbf{X}, \mathbf{Y}, and \mathbf{V}.
c. Show that

$$
\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}=\left(\begin{array}{cc}
b n & \mathbf{0}^{\prime} \\
\mathbf{0} & a \mathbf{X}_{c}^{\prime} \mathbf{X}_{c}
\end{array}\right)
$$

where $a=1 /(1-\rho)$ and $b=1 /[1+(n-1) \rho]$. (Hint: $\left.\mathbf{V}^{-1}=a(\mathbf{I}-b \rho \mathbf{J}).\right)$
d. Show that

$$
\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{Y}=\binom{b n \bar{Y}}{a \mathbf{X}_{c}^{\prime} \mathbf{Y}}
$$

e. Show that the GLS for $\boldsymbol{\beta}$ is given by

$$
\hat{\boldsymbol{\beta}}=\binom{\hat{\alpha}}{\hat{\boldsymbol{\beta}}_{1}}=\binom{\bar{Y}}{\left(\mathbf{X}_{c}^{\prime} \mathbf{X}_{c}\right)^{-1} \mathbf{X}_{c}^{\prime} \mathbf{Y}}
$$

where $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$.
2. Consider the cell means ANOVA model

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}
$$

for $i=1,2,3$ and $j=1,2, \ldots, n$, where $\epsilon_{i j}$ are iid $N\left(0, \sigma^{2}\right)$. The restriction

$$
\mu_{3}=\mu_{1}-\mu_{2}
$$

is placed on the parameters. Define $\boldsymbol{\beta}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{\prime}$.
a. Write this as a general linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$, and express the restriction in the form of $\mathbf{A}^{\prime} \boldsymbol{\beta}=\boldsymbol{\delta}$.
b. Find the restricted least squares estimator, $\hat{\boldsymbol{\beta}}_{R}$. Express this estimator in terms of the treatment means, $\bar{Y}_{i \text {. }}$ for $i=1,2,3$.
c. Define

$$
Q(\boldsymbol{\beta})=(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

and let $\hat{\boldsymbol{\beta}}$ denote the unrestricted least squares estimators. How do $Q(\hat{\boldsymbol{\beta}})$ and $Q\left(\hat{\boldsymbol{\beta}}_{R}\right)$ compare and why?
d. Find $E[Q(\hat{\boldsymbol{\beta}})]$ and $\operatorname{var}[Q(\hat{\boldsymbol{\beta}})]$ (under the model without the restriction).
e. Consider testing $H_{0}: \mu_{3}=\mu_{1}-\mu_{2}$. Give the F test statistic and its distribution when H_{0} is true, and explain how this distribution will change under the alternative hypothesis $H_{a}: \mu_{3}-\left(\mu_{1}-\mu_{2}\right)=\delta \neq 0$.
3. Consider the general linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where \mathbf{X} is $n \times p$ with rank $r \leq p, \boldsymbol{\beta}$ is $p \times 1$, and $\boldsymbol{\varepsilon} \sim \mathcal{N}_{n}(\mathbf{0}, \mathbf{V})$, where \mathbf{V} is known and nonsingular. Let $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{Y}$ denote an ordinary least squares estimator, and $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-}$denotes a generalized inverse of $X^{\prime} \mathbf{X}$. Define:

$$
\hat{\sigma}^{2}=(n-r)^{-1} \mathbf{Y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{X}\right) \mathbf{Y}
$$

where \mathbf{P}_{X} is the projection matrix onto the column space of $\mathbf{X}, \mathcal{C}(\mathbf{X})$. Suppose that $\boldsymbol{\lambda}$ is a p-dimensional vector and $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$ is estimable.
a. Suppose that $\mathbf{V}=\sigma^{2} \mathbf{I}$. Derive the sampling distribution of $\boldsymbol{\lambda}^{\prime} \hat{\boldsymbol{\beta}}$.
b. Suppose that $\mathbf{V X}=\mathbf{X Q}$ for some matrix \mathbf{Q}. Prove that $\boldsymbol{\lambda}^{\prime} \hat{\boldsymbol{\beta}}$ and $\left(\mathbf{I}-\mathbf{P}_{X}\right) \mathbf{Y}$ are independent.
c. Suppose that $\mathbf{V}=\sigma^{2}\left(\mathbf{I}+\mathbf{P}_{X}\right)$, for some $\sigma^{2}>0$. Define

$$
T=\frac{\boldsymbol{\lambda}^{\prime} \hat{\boldsymbol{\beta}}-\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}}{\sqrt{\hat{\sigma}^{2} \boldsymbol{\lambda}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \boldsymbol{\lambda}}}
$$

Find the constant k such that $k T$ follows a t distribution. What is its degrees of freedom? Is this a central t distribution?
d. As in part (c), suppose that $\mathbf{V}=\sigma^{2}\left(\mathbf{I}+\mathbf{P}_{X}\right)$. Use the results in part (c) to derive a $100(1-\alpha) \%$ confidence interval for $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$.
e. As in part (c), suppose that $\mathbf{V}=\sigma^{2}\left(\mathbf{I}+\mathbf{P}_{X}\right)$. Build a $100(1-\alpha) \%$ confidence interval for $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$, based on the generalized least squares estimator and compare the two intervals in (d) and (e).

