Prelim Exam Linear Models Fall 2019

Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q1 is 35 points; Q2 is 30 points, and Q3 is 35 points.

1. Assume each Y_i (i = 1, ..., n) can be modeled by the following linear regression model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \epsilon_i,$$

where
$$\boldsymbol{\varepsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \sim N(\mathbf{0}, \boldsymbol{\Sigma}) \text{ with } \boldsymbol{\Sigma} = \sigma^2 \mathbf{V}, \, \sigma^2 > 0, \, \text{and}$$

$$\mathbf{V} = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix} = (1 - \rho)\mathbf{I} + \rho\mathbf{J};$$

here, I is an $n \times n$ identity matrix; J is an $n \times n$ matrix whose elements are all 1s.

The 'centered form' of the model can be written as

$$Y_i = \beta_0 + \beta_1 (X_{i1} - \bar{X}_1) + \dots + \beta_p (X_{ip} - \bar{X}_p) + \epsilon_i,$$

where $\bar{X}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}; j = 1, ..., p$.

Define $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)'; \ \boldsymbol{\beta}_1 = (\beta_1, \dots, \beta_n)'; \ \mathbf{j}$ is an n-dimensional vector of 1s; $\alpha = \beta_0 + \beta_1 \bar{X}_1 + \dots + \beta_p \bar{X}_p; \ \mathbf{X}_c = \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)\tilde{\mathbf{X}}$ with

$$\tilde{\mathbf{X}} = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \end{pmatrix}.$$

a. Show that the following is equivalent to the 'centered' form of the model:

$$\mathbf{Y} = (\mathbf{j}, \ \mathbf{X}_c) \begin{pmatrix} \alpha \\ \boldsymbol{\beta}_1 \end{pmatrix} + \boldsymbol{\varepsilon}.$$

- b. Let $\mathbf{X} = (\mathbf{j}, \ \mathbf{X}_c)$ and $\boldsymbol{\beta} = \begin{pmatrix} \alpha \\ \boldsymbol{\beta}_1 \end{pmatrix}$. Derive the generalized least squares (GLS) estimator for $\boldsymbol{\beta}$ in terms of \mathbf{X} , \mathbf{Y} , and \mathbf{V} .
- c. Show that

$$\mathbf{X}'\mathbf{V}^{-1}\mathbf{X} = \begin{pmatrix} bn & \mathbf{0}' \\ \mathbf{0} & a\mathbf{X}_c'\mathbf{X}_c \end{pmatrix}$$

where $a = 1/(1 - \rho)$ and $b = 1/[1 + (n-1)\rho]$. (*Hint*: $\mathbf{V}^{-1} = a(\mathbf{I} - b\rho\mathbf{J})$.)

d. Show that

$$\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y} = \left(\begin{array}{c} bn\bar{Y} \\ a\mathbf{X}_c'\mathbf{Y} \end{array}\right).$$

e. Show that the GLS for β is given by

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} \hat{\alpha} \\ \hat{\boldsymbol{\beta}}_1 \end{pmatrix} = \begin{pmatrix} \bar{Y} \\ (\mathbf{X}_c'\mathbf{X}_c)^{-1}\mathbf{X}_c'\mathbf{Y} \end{pmatrix},$$

where $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.

2. Consider the cell means ANOVA model

$$Y_{ij} = \mu_i + \epsilon_{ij},$$

for i = 1, 2, 3 and j = 1, 2, ..., n, where ϵ_{ij} are iid $N(0, \sigma^2)$. The restriction

$$\mu_3 = \mu_1 - \mu_2$$

is placed on the parameters. Define $\beta = (\mu_1, \mu_2, \mu_3)'$.

- a. Write this as a general linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and express the restriction in the form of $\mathbf{A}'\boldsymbol{\beta} = \boldsymbol{\delta}$.
- b. Find the restricted least squares estimator, $\hat{\beta}_R$. Express this estimator in terms of the treatment means, \bar{Y}_i , for i=1,2,3.
- c. Define

$$Q(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

and let $\hat{\beta}$ denote the *unrestricted* least squares estimators. How do $Q(\hat{\beta})$ and $Q(\hat{\beta}_R)$ compare and why?

- d. Find $E[Q(\hat{\beta})]$ and $var[Q(\hat{\beta})]$ (under the model without the restriction).
- e. Consider testing $H_0: \mu_3 = \mu_1 \mu_2$. Give the *F test statistic* and its distribution when H_0 is true, **and** explain how this distribution will change under the alternative hypothesis H_a : $\mu_3 (\mu_1 \mu_2) = \delta \neq 0$.

3. Consider the general linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where \mathbf{X} is $n \times p$ with rank $r \leq p$, $\boldsymbol{\beta}$ is $p \times 1$, and $\boldsymbol{\varepsilon} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{V})$, where \mathbf{V} is known and nonsingular. Let $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^-\mathbf{X}'\mathbf{Y}$ denote an ordinary least squares estimator, and $(\mathbf{X}'\mathbf{X})^-$ denotes a generalized inverse of $\mathbf{X}'\mathbf{X}$. Define:

$$\hat{\sigma}^2 = (n-r)^{-1} \mathbf{Y}' (\mathbf{I} - \mathbf{P}_X) \mathbf{Y},$$

where P_X is the projection matrix onto the column space of X, C(X). Suppose that λ is a p-dimensional vector and $\lambda'\beta$ is estimable.

- a. Suppose that $V = \sigma^2 I$. Derive the sampling distribution of $\lambda' \hat{\beta}$.
- b. Suppose that VX = XQ for some matrix Q. Prove that $\lambda'\hat{\beta}$ and $(I P_X)Y$ are independent.
- c. Suppose that $V = \sigma^2(I + P_X)$, for some $\sigma^2 > 0$. Define

$$T = \frac{\lambda' \hat{\beta} - \lambda' \beta}{\sqrt{\hat{\sigma}^2 \lambda' (\mathbf{X}' \mathbf{X})^{-} \lambda}}.$$

Find the constant k such that kT follows a t distribution. What is its degrees of freedom? Is this a central t distribution?

- d. As in part (c), suppose that $V = \sigma^2(I + P_X)$. Use the results in part (c) to derive a $100(1 \alpha)\%$ confidence interval for $\lambda'\beta$.
- e. As in part (c), suppose that $V = \sigma^2(I + P_X)$. Build a $100(1 \alpha)\%$ confidence interval for $\lambda'\beta$, based on the generalized least squares estimator and compare the two intervals in (d) and (e).