MATHEMATICS QUALIFYING EXAM

AUGUST 20, 2019

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. The norm of $\vec{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$ is $\|\vec{x}\| := \sqrt{\sum_{j=1}^{n} x_j^2}$ and the inner product is $\mathbf{x} \cdot \mathbf{y} := \sum_{j=1}^{n} x_j y_j$. Unless explicitly stated, proofs, or counterexamples, are required for all problems.

- **1.** (a) For a function $f:[0,\infty)\to\mathbb{R}$, define what it means to say that $\lim f(x)=a$ for some real a.
 - (b) Suppose $f:[0,\infty)\to\mathbb{R}$ is continuous with f(0)=1 and $\lim f(x)=0$. Prove that there exists a $\xi \in [0,\infty)$ such that $f(\xi) = \max_{x \in [0,\infty)} f(x)$.
- **2.** Let $(f_n)_1^\infty$ be a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$.
 - (a) Define what it means to say that $(f_n)_1^\infty$ converges uniformly on [0,1] to $f: \mathbb{R} \to \mathbb{R}$.
 - (b) Suppose f_n, f are strictly positive functions (defined on \mathbb{R}), each f_n is continuous, and $(f_n)_1^{\infty}$ converges uniformly on [0,1] to f. Prove that $(1/f_n)_1^{\infty}$ converges uniformly on [0,1] to 1/f.
- **3.** Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable. Suppose f(0) = 0, f(1) = 0, and that for all $x \in [0, 1]$, we have f''(x) < 0. Prove that for all $x \in [0, 1]$, f(x) > 0.
- 4. Let (a_n) be a monotone decreasing sequence of positive numbers. (a) Prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if the series

$$\sum_{n=1}^{\infty} 2^n a_{2^n}$$

converges.

(b) Using the previous part, show that the following series diverge:

$$\sum_{n=1}^{\infty} \frac{1}{n}, \ \sum_{n=2}^{\infty} \frac{1}{n(\log n)}.$$

5. Consider the vector space V of 2×2 real symmetric matrices with the usual algebraic operations. (You do not need to verify that V is a linear space.) For $A, B \in \mathbf{V}$ define the inner product

$$\langle A, B \rangle := \operatorname{tr}(AB)$$

Here tr denotes the trace, i.e., the sum of the diagonal elements of a matrix.

- (a) Verify that $\langle A, B \rangle$ is indeed an inner product on **V**.
- (b) Find an orthonormal basis of **V**.
- 6. Let A, B be $n \times n$ matrices with real entries. Suppose that AB = BA and that A has n distinct (real) eigenvalues.
 - (a) Prove that there is a basis \mathcal{B} for \mathbb{R}^n such that each vector in \mathcal{B} is an eigenvector for both A and B.
 - (b) Show that there is an invertible $n \times n$ matrix P such that both PAP^{-1} and PBP^{-1} are diagonal matrices.

7. Let
$$\vec{a}_1 = \begin{bmatrix} 2\\1\\0\\1 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}, \vec{b} = \begin{bmatrix} 2\\1\\1\\-1 \end{bmatrix}, \text{ and } \mathbf{W} = Span\{\vec{a}_1, \vec{a}_2\} \text{ in } \mathbb{R}^4.$$
 (Note that $\vec{a}_1 \not\perp \vec{a}_2.$)

- (a) Find vectors \vec{w} in \mathbf{W} and \vec{v} in \mathbf{W}^{\perp} so that $\vec{b} = \vec{w} + \vec{v}$.
- (b) Find the distance from \vec{b} to **W**.
- 8. Show that the system of equations

$$\begin{array}{rcl} x+y+z+w &=& 4 \\ x^4+y^3+z^2+w &=& 4 \end{array}$$

can be solved uniquely for x, y in terms of z, w near (1, 1, 1, 1). Hint: Verify the assumptions of the Implicit Function Theorem.