MATHEMATICS QUALIFYING EXAM

AUGUST 20, 2019

Four Hour Time Limit

Notation: \mathbb{R} is the field of real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. The norm of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is $\|\vec{x}\|:=\sqrt{\sum_{j=1}^{n} x_{j}^{2}}$ and the inner product is $\mathbf{x} \cdot \mathbf{y}:=\sum_{j=1}^{n} x_{j} y_{j}$.
Unless explicitly stated, proofs, or counterexamples, are required for all problems.

1. (a) For a function $f:[0, \infty) \rightarrow \mathbb{R}$, define what it means to say that $\lim _{x \rightarrow \infty} f(x)=a$ for some real a.
(b) Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous with $f(0)=1$ and $\lim _{x \rightarrow \infty} f(x)=0$. Prove that there exists a $\xi \in[0, \infty)$ such that $f(\xi)=\max _{x \in[0, \infty)} f(x)$.
2. Let $\left(f_{n}\right)_{1}^{\infty}$ be a sequence of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Define what it means to say that $\left(f_{n}\right)_{1}^{\infty}$ converges uniformly on $[0,1]$ to $f: \mathbb{R} \rightarrow \mathbb{R}$.
(b) Suppose f_{n}, f are strictly positive functions (defined on \mathbb{R}), each f_{n} is continuous, and $\left(f_{n}\right)_{1}^{\infty}$ converges uniformly on $[0,1]$ to f. Prove that $\left(1 / f_{n}\right)_{1}^{\infty}$ converges uniformly on $[0,1]$ to $1 / f$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable. Suppose $f(0)=0, f(1)=0$, and that for all $x \in[0,1]$, we have $f^{\prime \prime}(x) \leq 0$. Prove that for all $x \in[0,1], f(x) \geq 0$.
4. Let (a_{n}) be a monotone decreasing sequence of positive numbers.
(a) Prove that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the series

$$
\sum_{n=1}^{\infty} 2^{n} a_{2^{n}}
$$

converges.
(b) Using the previous part, show that the following series diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \sum_{n=2}^{\infty} \frac{1}{n(\log n)} .
$$

5. Consider the vector space \mathbf{V} of 2×2 real symmetric matrices with the usual algebraic operations. (You do not need to verify that \mathbf{V} is a linear space.) For $A, B \in \mathbf{V}$ define the inner product

$$
\langle A, B\rangle:=\operatorname{tr}(A B)
$$

Here tr denotes the trace, i.e., the sum of the diagonal elements of a matrix.
(a) Verify that $\langle A, B\rangle$ is indeed an inner product on \mathbf{V}.
(b) Find an orthonormal basis of \mathbf{V}.
6. Let A, B be $n \times n$ matrices with real entries. Suppose that $A B=B A$ and that A has n distinct (real) eigenvalues.
(a) Prove that there is a basis \mathcal{B} for \mathbb{R}^{n} such that each vector in \mathcal{B} is an eigenvector for both A and B.
(b) Show that there is an invertible $n \times n$ matrix P such that both $P A P^{-1}$ and $P B P^{-1}$ are diagonal matrices.
7. Let $\vec{a}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right], \vec{b}=\left[\begin{array}{c}2 \\ 1 \\ 1 \\ -1\end{array}\right]$, and $\mathbf{W}=\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$ in \mathbb{R}^{4}. (Note that $\vec{a}_{1} \not \perp \vec{a}_{2}$.)
(a) Find vectors \vec{w} in \mathbf{W} and \vec{v} in \mathbf{W}^{\perp} so that $\vec{b}=\vec{w}+\vec{v}$.
(b) Find the distance from \vec{b} to \mathbf{W}.
8. Show that the system of equations

$$
\begin{aligned}
x+y+z+w & =4 \\
x^{4}+y^{3}+z^{2}+w & =4
\end{aligned}
$$

can be solved uniquely for x, y in terms of z, w near $(1,1,1,1)$. Hint: Verify the assumptions of the Implicit Function Theorem.

