REAL ANALYSIS PRELIMINARY EXAM AUGUST 2019

Time allowed: 2 hours 30 minutes.

Answer all problems and fully justify your work. m^n is Lebesgue measure on \mathbb{R}^n and m^* is Lebesgue outer measure on \mathbb{R} .

QUESTION 1

Given any integrable function $\varphi \colon [0,1] \to \mathbb{R}$, define a corresponding sequence of functions by $\varphi_n(x) := n \int_x^{x+\frac{1}{n}} \varphi(t) dt$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Here $\varphi(t) := 0$ for $t \in (1,2]$. With this definition, prove the following.

(1) If $f, g: [0, 1] \to \mathbb{R}$ are integrable functions, then

$$\int_0^1 |f_n(x) - g_n(x)| \, \mathrm{d}x \le \int_0^1 |f(x) - g(x)| \, \mathrm{d}x.$$

- (2) If $g: [0,1] \to \mathbb{R}$ is continuous, then $g_n \to g$ uniformly.
- (3) If $f: [0,1] \to \mathbb{R}$ is integrable, then $\int_0^1 |f_n f| \, \mathrm{d}t \to 0$. You may use without proof that for any $\varepsilon > 0$ there exists an con
 - tinuous function $g \colon [0,1] \to \mathbb{R}$ such that $\int_0^1 |f(x) g(x)| \, \mathrm{d}x < \varepsilon$.

QUESTION 2

- (1) Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \leq L|x y|$ for every $x, y \in \mathbb{R}$. Prove that $m^*(f(A)) \leq Lm^*(A)$ for every set $A \subset \mathbb{R}$. (2) Let $f \colon \mathbb{R} \to \mathbb{R}$ be $f(x) = e^{-x^2}$. Show that if $A \subset \mathbb{R}$ with m(A) = 0
- then m(f(A)) = 0.
- (3) Suppose $q: \mathbb{R} \to \mathbb{R}$ is a continuous function. For sets $A \subset \mathbb{R}$, is it necessarily true that m(A) = 0 implies m(q(A)) = 0?

Please turn over for remaining questions.

QUESTION 3

Let $f_n: [0,1] \to \mathbb{R}$ be absolutely continuous functions with $f_n(0) = 0$. Suppose there is integrable $g: [0,1] \to \mathbb{R}$ such that $\int_0^1 |f'_n(t) - g(t)| dt \to 0$ as $n \to \infty$.

Prove that f_n converge uniformly to some absolutely continuous function $\phi: [0,1] \to \mathbb{R}$ which satisfies $\phi'(x) = g(x)$ for Lebesgue almost every x.

QUESTION 4

Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measure spaces. Give the definition of the product measure $\mu \times \nu$ and the family of sets on which it is defined.

Let $L = ([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \subset \mathbb{R}^2$ and $\Delta = \{(x,x) \colon x \in \mathbb{R}\} \subset \mathbb{R}^2$.

(1) Find with proof the product measure $(m \times m)(L)$.

(2) Find with proof the product measure $(m \times c)(L)$.

(3) Find with proof the product measure $(m \times m)(\Delta)$.

(4) Find with proof the product measure $(m \times c)(\Delta)$.

Here c is counting measure defined on all subsets of \mathbb{R} (so c(A) is the number of elements of a set A).