REAL ANALYSIS PRELIMINARY EXAM AUGUST 2019

Time allowed: 2 hours 30 minutes.
Answer all problems and fully justify your work.
m^{n} is Lebesgue measure on \mathbb{R}^{n} and m^{*} is Lebesgue outer measure on \mathbb{R}.

Question 1

Given any integrable function $\varphi:[0,1] \rightarrow \mathbb{R}$, define a corresponding sequence of functions by $\varphi_{n}(x):=n \int_{x}^{x+\frac{1}{n}} \varphi(t) \mathrm{d} t$ for $x \in[0,1]$ and $n \in \mathbb{N}$. Here $\varphi(t):=0$ for $t \in(1,2]$. With this definition, prove the following.
(1) If $f, g:[0,1] \rightarrow \mathbb{R}$ are integrable functions, then

$$
\int_{0}^{1}\left|f_{n}(x)-g_{n}(x)\right| \mathrm{d} x \leq \int_{0}^{1}|f(x)-g(x)| \mathrm{d} x .
$$

(2) If $g:[0,1] \rightarrow \mathbb{R}$ is continuous, then $g_{n} \rightarrow g$ uniformly.
(3) If $f:[0,1] \rightarrow \mathbb{R}$ is integrable, then $\int_{0}^{1}\left|f_{n}-f\right| \mathrm{d} t \rightarrow 0$.

You may use without proof that for any $\varepsilon>0$ there exists an continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}|f(x)-g(x)| \mathrm{d} x<\varepsilon$.

Question 2

(1) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $|f(x)-f(y)| \leq L|x-y|$ for every $x, y \in \mathbb{R}$. Prove that $m^{*}(f(A)) \leq L m^{*}(A)$ for every set $A \subset \mathbb{R}$.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=e^{-x^{2}}$. Show that if $A \subset \mathbb{R}$ with $m(A)=0$ then $m(f(A))=0$.
(3) Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. For sets $A \subset \mathbb{R}$, is it necessarily true that $m(A)=0$ implies $m(g(A))=0$?

Please turn over for remaining questions.

Question 3

Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be absolutely continuous functions with $f_{n}(0)=0$. Suppose there is integrable $g:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}\left|f_{n}^{\prime}(t)-g(t)\right| \mathrm{d} t \rightarrow 0$ as $n \rightarrow \infty$.

Prove that f_{n} converge uniformly to some absolutely continuous function $\phi:[0,1] \rightarrow \mathbb{R}$ which satisfies $\phi^{\prime}(x)=g(x)$ for Lebesgue almost every x.

Question 4

Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measure spaces. Give the definition of the product measure $\mu \times \nu$ and the family of sets on which it is defined.

Let $L=([0,1] \times\{0\}) \cup(\{0\} \times[0,1]) \subset \mathbb{R}^{2}$ and $\Delta=\{(x, x): x \in \mathbb{R}\} \subset \mathbb{R}^{2}$.
(1) Find with proof the product measure $(m \times m)(L)$.
(2) Find with proof the product measure $(m \times c)(L)$.
(3) Find with proof the product measure $(m \times m)(\Delta)$.
(4) Find with proof the product measure $(m \times c)(\Delta)$.

Here c is counting measure defined on all subsets of \mathbb{R} (so $c(A)$ is the number of elements of a set A).

