Statistical Methods Prelim Exam

 $9{:}30~\mathrm{am}$ -12:00 pm, Thursday, August 22, 2019

1. Let X_1, \ldots, X_n be i.i.d. with finite mean μ and variance $0 < \sigma^2 < \infty$. Let $S^2 = (1/(n-1)) \sum (X_i - \bar{x})^2$ where $\bar{X} = \sum X_i/n$.

Show that S^2 is asymptotically normally distributed in the sense that $\sqrt{n}(S^2 - \sigma^2)$ converges in distribution to N(0,c) for some constant c > 0. You may use the identity, $\sum (X_i - \mu)^2 = \sum (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2$.

- 2. Let X_1, X_2, X_3 be i.i.d. $N(\mu, \sigma^2)$ with $-\infty < \mu < \infty, 0 < \sigma^2 < \infty$. Assume that μ is unknown but σ is known. Let $T_1 = (X_1 + 2X_2 + 3X_3)/6, T_2 = X_1^2 - X_2^2 + \frac{1}{2}X_1 + |X_1X_3| - |X_2X_3|$ and $\bar{X} = (X_1 + X_2 + X_3)/3$.
 - (a) Find the conditional distribution of X_1 given T_1 .
 - (b) Determine whether T_1 is sufficient for μ , and justify your answer.
 - (c) Evaluate $E(T_2|\bar{X}=\bar{x})$.
- 3. Suppose that X_1, \ldots, X_m are i.i.d. Uniform $(-\theta, \theta)$, and Y_1, \ldots, Y_n are i.i.d. Uniform $(-2\theta, 2\theta)$ where $\theta \in (0, \infty)$ is assumed unknown. Assume that the X's and Y's are independent.

(a) Find the most powerful level α test for $H_0: \theta = 3$ versus $H_1: \theta = 4$. Give the exact rejection region of the test. (Hint: You may first find the distribution $Y_1/2$).

- (b) Is this a uniformly most powerful test for $H_0: \theta = 3$ versus $H_1: \theta > 3$? Justify your answer.
- 4. Let X_1, \ldots, X_n be i.i.d. random sample from $U(\theta, \theta + 1)$, where $-\infty < \theta < \infty$ and it is unknown. Assume a prior distribution for θ given by the probability density function, for $-\infty < \theta < \infty$,

$$\pi(\theta) = \frac{1}{2}e^{-|\theta|}$$

- (a) Find the posterior distribution of θ , and give an exact closed form expression for the posterior density function.
- (b) Find the Bayes estimate of θ with respect to the squared error loss function.