Topology Preliminary Examination August 2019 University of Cincinnati Department of Mathematical Sciences

Show all essential work.

- 1. Let X be a compact metric space and $\{U_{\alpha}, \alpha \in A\}$ an open cover of X. Prove that there is a $\rho > 0$ such that if $d(x, y) < \rho$ then there exists an $\alpha \in A$ so that $x, y \in U_{\alpha}$.
- 2. Let X be a space that is the union of subspaces S_1, S_2, \ldots, S_n , each of which is homeomorphic to the unit circle. Assume there is a point p of X such that $S_i \cap S_j = \{p\}$ for $i \neq j$.
 - (a) Show that X is Hausdorff if and only if each space S_i is closed in X.
 - (b) Give an example to show that X need not to be Hausdorff.
 - (c) Assume that X is Hausdorff. Determine $\pi_1(X, p)$. Justify your answer.
- 3. Let $f: A \to \prod_{\alpha \in j} X_{\alpha}$ be given by the equation $f(a) = (f_{\alpha}(a))_{\alpha \in J}$, where $f_{\alpha}: A \to X_{\alpha}$ for each α .
 - (a) Let $\prod X_{\alpha}$ have the product topology. Show that if f is continuous then each function f_{α} is continuous.
 - (b) Let $\prod X_{\alpha}$ have the product topology. Show that if each f_{α} is continuous then f is continuous.
 - (c) Let $\prod X_{\alpha}$ have the box topology. Give an example to show that if each f_{α} is continuous then f need not be continuous.
- 4. Show that a path connected space is connected. Show that if $U \subset \mathbb{R}^n$ is open and connected then it is path connected.
- 5. Let $B \subset \mathbb{R}^3$ be the closed unit ball, so that

$$B = \{ X = (x, y, z) : |X|^2 = x^2 + y^2 + z^2 \le 1 \}.$$

Define an equivalence relation on B by $X \sim Y$ if |X| = |Y|. Show that B/\sim is homeomorphic to [0, 1].

Recall that X/\sim is the collection of equivalence classes determined by \sim . Introduce $q: X \to X/\sim$ as the function that assigns each point of X to the equivalence class to which it belongs. The topology on X/\sim is defined by saying $A \subset X/\sim$ is open if and only if $q^{-1}(A)$ is open in X, i.e., the union of the equivalence classes represented by the pts in A is open in X.