PhD Preliminary Exam in Algebra - Fall 2020

Full marks may be obtained by complete answers to 4 questions. Time allowed - 2 1/2 hours No calculators

- (1) Let F be a field with 2^{16} elements. Find all the subfields of F, giving complete proofs of all your claims.
- (2) Prove that there exists an abelian Galois extension over \mathbb{Q} of degree 11. Write it in the form $\mathbb{Q}(\)$ for $\in \mathbb{C}$. (Hint: Take a suitable cyclotomic field, and look at its subfields.)
- (3) Consider the ring $\mathbb{Z}[X]$. Describe the irreducible elements of $\mathbb{Z}[X]$. Show that $\mathbb{Z}[X]$ is a unique factorization domain.
- (4) Let $K \subset L$ be a finite extension of fields.
 - (a) Define what it means for the extension to be *separable*.
 - (b) Suppose that [L:K] = 2. Show that the extension is not separable if and only if the characteristic of K is 2 and L = K() where ${}^{2} \in K$.
- (5) Let $K \subset L$ be a finite extension of fields.
 - (a) Define what it means for the extension to be normal.
 - (b) Define what it means for L to be a splitting field for a polynomial $f(x) \in K[x]$.
 - (c) Prove that the extension is normal if and only if L is a splitting field for a polynomial $f(x) \in K[x]$.