COMPLEX ANALYSIS PRELIM EXAM. AUGUST 2020

\mathbb{C} is the field of complex numbers $z=x+i y, \mathbb{R}$ the field of real numbers, \mathbb{D} the open unit disk, and $\widehat{\mathbb{C}}$ the Riemann sphere (aka, extended complex plane)

If you use a known theorem, or a similar result from a textbook, be sure to explicitly indicate so. Any other facts used must be proven. Proofs, or counter examples, are required for all problems.
(1) Consider the holomorphic map $\mathbb{C} \xrightarrow{\text { exp }} \mathbb{C}$. Let L be an Euclidean straight line in \mathbb{C}.
(a) Describe the preimage $\exp ^{-1}(L)$ if $0 \in L$.
(b) Suppose L lies in $\mathbb{C} \backslash\{0\}$. Pick $a \in L$ with $\operatorname{dist}(0, L)=|a|$. Describe the component of $\exp ^{-1}(L)$ that contains the point $b:=\log (a)$. (Suggestion: Consider the cases where $a=1,|a|=1, a=r e^{i \theta}$.)
(c) Let $a \in L \subset \mathbb{C} \backslash\{0\}$ be as above. What can you say about $\exp ^{-1}(L) \cap \exp ^{-1}(\{t a \mid t \in \mathbb{R}\})$?
(2) Evaluate $\int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+1} d x$.
(3) Let f be a complex polynomial. Assume f has a simple zero at $z=a$.
(a) Suppose $\Omega \xrightarrow{g} \mathbb{C}$ is holomorphic (in a domain Ω) and for each $z \in \Omega, g(z)^{2}=f(z)$. Prove that $a \notin \Omega$.
(b) Must the conclusion in part (a) hold if f has a non-simple zero at $z=a$?
(4) Let $u(x, y)=x \cos (y)+h(y)$ where h is a function of y alone. Prove that there is no holomorphic function f on the complex plane such that u is the real part of f.
(5) How many roots (counted with multiplicity) does the function $g(z)=6 z^{3}+e^{z}+1$ have in the unit disk $\mathbb{D}=\{z:|z|<1\}$.

