
Prelim Exam Linear Models Fall 2020 

Preliminary Examination: 
LINEAR MODELS 

Answer all questions and show all work. 
Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points. 

1. Let X1 and X2 be n × p1 and n × p2 matrices of predictors whose columns are linearly 
independent to each other. We consider the linear regression model below: 

Y = X1β1 + X2β2 + ε, 

where β1 and β2 are p1 - and p2-dimensional vectors, respectively, and ε ∼ N(0, σ2I). � � 
β1a. Express the ordinary least square (OLS) estimator for β = using X1, X2β2 

and Y. 

b. Let � � � �� �
ˆ X0 

ˆ β1 G11 G12 1Y 
β = = ˆ X0β2 G21 G22 2Y 

be the OLS estimator found above in part (a). Find the explicit forms of G11, G12, 
G21, and G22. 

c. Based on the results in part (b), show that β̂ 
1 = (X1 

0 X1)
−1X1 

0 Y when X1 
0 X2 = 0. 

2. The theory of optimal linear prediction parallels closely the theory of optimal linear es-
timation. In this question you are asked to derive a fundamental result pertaining to the 
former. 

Let Y ∈ R be a random response, and let x ∈ Rp be a random predictor. We seek a linear 
predictor α+x0β that minimizes E[(Y −α −x0β)2] over all choice of α ∈ R and β ∈ Rp. 
Such a predictor α + x0β is called a best linear predictor of Y . 

Defne µy = E(Y ), µx = E(x), σy 
2 = var(Y ), Vxx = Cov(x), and Vxy = Cov(x, Y ) = 

Vyx 
0 = Cov(Y, x)0 . Without loss of generality, we will write an arbitrary linear predictor 

in the form α + (x − µx)
0β. 

a. Show that the optimal choice of α is simply α̂ = µy. 

b. Show that if β∗ is a solution to the linear system 

Vxxβ = Vxy, 

1 



then µy + (x − µ )0β∗ is the best linear predictor of Y . [Hint: Without loss ofx 

generality, you may assume µy = 0 and µx = 0 for this part.] 

c. Derive an expression for a 95% prediction interval for Y based on the best linear 
predictor in part (b). State any assumptions necessary for the validity of your inter-
val. 

3. Given the dataset {xi, yi}ni=1, we wish to obtain a bootstrapped least-squares estimate for 
β under the model 

(1) Y = Xβ + ε, E[ε|X] = 0, V ar[ε|X] = σ2In, 

0 0 ]0with X = [x1, . . . , xn]
0 and Y = [y1, . . . , yn . Here, X is n × p with rank(X) = p. 

Bootstrapping is a type of resampling where samples of the same size n are drawn, with 
replacement, from a single original sample. Let ui ≡ (δij )nj=1 be a 1 × n vector with zero 
entries apart from uii = 1, then we can select the i-th row of X by xi = uiX, or the i-th 
entry in Y by yi = uiY. Thus, if X̃ and Ỹ are the corresponding bootstrap samples of 
X and Y, respectively, we can represent the bootstrap sample by a matrix of B with rows 
that are similar to ui, but with i being sampled, and such that X̃ = BX and Ỹ = BY. 

a. For the bootstrap sample (X̃ , Ỹ), we will calculate the OLS estimator which is called 
the bootstrapped least square estimator for β. Show that this bootstrapped least 
square estimator for β, say β̃(B), is actually a weighted least square estimator 
from the original data. More specifcally, show that β̃(B) is the generalized least 
square estimator for β in 

Y = Xβ + ε, E[ε|X, B] = 0, V ar[ε|X, B] = σ2W(B)−1 , 

where the matrix W(B)−1 is a function of the bootstrap sampling scheme, i.e., thus 
a function of B, and show that W(B)−1 is a diagonal matrix. 

b. Provide an expression for w(B) ≡ Diag(W(B)−1), the vector consisting of diag-
onal elements of W(B)−1 . In addition, show that for its i-th element, we have � � 

1 
w(B)i ∼ Binomial n, , i = 1, . . . , n. 

n 

What does w(B)i represent? 

c. Since β̃(B) depends on w(B), let us denote w(B) as w and set β̃(w) ≡ β̃(B). 
Now regard β̃(w) as a function of w and use the delta method with a second order 
approximation around E(w) to conclude that Ew[β̃(w)] ≈ β̂, where β̂ is the OLS 
estimator for β in the original model in (1). 

d. Argue that with a positive probability β̃(w) might not exist. What can go wrong? 
Be as specifc as possible. 
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