Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q 1 is 30 points; Q 2 is 35 points, and Q3 is 35 points.

1. Let \mathbf{X}_{1} and \mathbf{X}_{2} be $n \times p_{1}$ and $n \times p_{2}$ matrices of predictors whose columns are linearly independent to each other. We consider the linear regression model below:

$$
\mathbf{Y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}
$$

where $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ are p_{1} - and p_{2}-dimensional vectors, respectively, and $\varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
a. Express the ordinary least square (OLS) estimator for $\boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}$ using $\mathbf{X}_{1}, \mathbf{X}_{2}$ and \mathbf{Y}.
b. Let

$$
\hat{\boldsymbol{\beta}}=\binom{\hat{\boldsymbol{\beta}}_{1}}{\hat{\boldsymbol{\beta}}_{2}}=\left(\begin{array}{ll}
\mathbf{G}_{11} & \mathbf{G}_{12} \\
\mathbf{G}_{21} & \mathbf{G}_{22}
\end{array}\right)\binom{\mathbf{X}_{1}^{\prime} \mathbf{Y}}{\mathbf{X}_{2}^{\prime} \mathbf{Y}}
$$

be the OLS estimator found above in part (a). Find the explicit forms of $\mathbf{G}_{11}, \mathbf{G}_{12}$, G_{21}, and G_{22}.
c. Based on the results in part (b), show that $\hat{\boldsymbol{\beta}}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{Y}$ when $\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}=\mathbf{0}$.
2. The theory of optimal linear prediction parallels closely the theory of optimal linear estimation. In this question you are asked to derive a fundamental result pertaining to the former.

Let $Y \in \mathbb{R}$ be a random response, and let $\mathbf{x} \in \mathbb{R}^{p}$ be a random predictor. We seek a linear predictor $\alpha+\mathbf{x}^{\prime} \boldsymbol{\beta}$ that minimizes $E\left[\left(Y-\alpha-\mathbf{x}^{\prime} \boldsymbol{\beta}\right)^{2}\right]$ over all choice of $\alpha \in \mathbb{R}$ and $\boldsymbol{\beta} \in \mathbb{R}^{p}$. Such a predictor $\alpha+\mathbf{x}^{\prime} \boldsymbol{\beta}$ is called a best linear predictor of Y.
Define $\mu_{y}=E(Y), \boldsymbol{\mu}_{x}=E(\mathbf{x}), \sigma_{y}^{2}=\operatorname{var}(Y), \mathbf{V}_{x x}=\operatorname{Cov}(\mathbf{x})$, and $\mathbf{V}_{x y}=\operatorname{Cov}(\mathbf{x}, Y)=$ $V_{y x}^{\prime}=\operatorname{Cov}(Y, \mathbf{x})^{\prime}$. Without loss of generality, we will write an arbitrary linear predictor in the form $\alpha+\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)^{\prime} \boldsymbol{\beta}$.
a. Show that the optimal choice of α is simply $\hat{\alpha}=\mu_{y}$.
b. Show that if $\boldsymbol{\beta}_{*}$ is a solution to the linear system

$$
\mathbf{V}_{x x} \boldsymbol{\beta}=\mathbf{V}_{x y}
$$

then $\mu_{y}+\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)^{\prime} \boldsymbol{\beta}_{*}$ is the best linear predictor of Y. [Hint: Without loss of generality, you may assume $\mu_{y}=0$ and $\boldsymbol{\mu}_{x}=\mathbf{0}$ for this part.]
c. Derive an expression for a 95% prediction interval for Y based on the best linear predictor in part (b). State any assumptions necessary for the validity of your interval.
3. Given the dataset $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$, we wish to obtain a bootstrapped least-squares estimate for $\boldsymbol{\beta}$ under the model

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, E[\varepsilon \mid \mathbf{X}]=\mathbf{0}, \operatorname{Var}[\varepsilon \mid \mathbf{X}]=\sigma^{2} \mathbf{I}_{n} \tag{1}
\end{equation*}
$$

with $\mathbf{X}=\left[\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{n}^{\prime}\right]^{\prime}$ and $\mathbf{Y}=\left[y_{1}, \ldots, y_{n}\right]^{\prime}$. Here, \mathbf{X} is $n \times p$ with $\operatorname{rank}(\mathbf{X})=p$.
Bootstrapping is a type of resampling where samples of the same size n are drawn, with replacement, from a single original sample. Let $\mathbf{u}_{i} \equiv\left(\delta_{i j}\right)_{j=1}^{n}$ be a $1 \times n$ vector with zero entries apart from $u_{i i}=1$, then we can select the i-th row of \mathbf{X} by $\mathbf{x}_{i}=\mathbf{u}_{i} \mathbf{X}$, or the i-th entry in \mathbf{Y} by $y_{i}=\mathbf{u}_{i} \mathbf{Y}$. Thus, if $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ are the corresponding bootstrap samples of \mathbf{X} and \mathbf{Y}, respectively, we can represent the bootstrap sample by a matrix of $\underset{\tilde{X}}{\mathbf{B}}$ with rows that are similar to \mathbf{u}_{i}, but with i being sampled, and such that $\tilde{\mathbf{X}}=\mathbf{B X}$ and $\tilde{\mathbf{Y}}=\mathbf{B Y}$.
a. For the bootstrap sample $(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})$, we will calculate the $O L S$ estimator which is called the bootstrapped least square estimator for $\boldsymbol{\beta}$. Show that this bootstrapped least square estimator for $\boldsymbol{\beta}$, say $\tilde{\boldsymbol{\beta}}(\mathbf{B})$, is actually a weighted least square estimator from the original data. More specifically, show that $\tilde{\boldsymbol{\beta}}(\mathbf{B})$ is the generalized least square estimator for $\boldsymbol{\beta}$ in

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon, E[\varepsilon \mid \mathbf{X}, \mathbf{B}]=\mathbf{0}, \operatorname{Var}[\varepsilon \mid \mathbf{X}, \mathbf{B}]=\sigma^{2} \mathbf{W}(\mathbf{B})^{-1}
$$

where the matrix $\mathbf{W}(\mathbf{B})^{-1}$ is a function of the bootstrap sampling scheme, i.e., thus a function of \mathbf{B}, and show that $\mathbf{W}(\mathbf{B})^{-1}$ is a diagonal matrix.
b. Provide an expression for $\mathbf{w}(\mathbf{B}) \equiv \operatorname{Diag}\left(\mathbf{W}(\mathbf{B})^{-1}\right)$, the vector consisting of diagonal elements of $\mathbf{W}(\mathbf{B})^{-1}$. In addition, show that for its i-th element, we have

$$
w(B)_{i} \sim \operatorname{Binomial}\left(n, \frac{1}{n}\right), i=1, \ldots, n
$$

What does $w(\mathbf{B})_{i}$ represent?
c. Since $\tilde{\boldsymbol{\beta}}(\mathbf{B})$ depends on $\mathbf{w}(\mathbf{B})$, let us denote $\mathbf{w}(\mathbf{B})$ as \mathbf{w} and set $\tilde{\boldsymbol{\beta}}(\mathbf{w}) \equiv \tilde{\boldsymbol{\beta}}(\mathbf{B})$. Now regard $\tilde{\boldsymbol{\beta}}(\mathbf{w})$ as a function of \mathbf{w} and use the delta method with a second order approximation around $E(\mathbf{w})$ to conclude that $E_{w}[\tilde{\boldsymbol{\beta}}(\mathbf{w})] \approx \hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the OLS estimator for $\boldsymbol{\beta}$ in the original model in (1).
d. Argue that with a positive probability $\tilde{\boldsymbol{\beta}}(\mathbf{w})$ might not exist. What can go wrong? Be as specific as possible.

