Prelim Exam

Linear Models

Fall 2020

Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points.

1. Let X_1 and X_2 be $n \times p_1$ and $n \times p_2$ matrices of predictors whose columns are linearly independent to each other. We consider the linear regression model below:

$$\mathbf{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon},$$

where β_1 and β_2 are p_1 - and p_2 -dimensional vectors, respectively, and $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

- a. Express the ordinary least square (OLS) estimator for $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ using X_1, X_2 and Y.
- b. Let

$$\hat{oldsymbol{eta}} = \left(egin{array}{c} \hat{oldsymbol{eta}}_1 \ \hat{oldsymbol{eta}}_2 \end{array}
ight) = \left(egin{array}{c} \mathbf{G}_{11} & \mathbf{G}_{12} \ \mathbf{G}_{21} & \mathbf{G}_{22} \end{array}
ight) \left(egin{array}{c} \mathbf{X}_1' \mathbf{Y} \ \mathbf{X}_2' \mathbf{Y} \end{array}
ight)$$

be the OLS estimator found above in part (a). Find the explicit forms of G_{11} , G_{12} , G_{21} , and G_{22} .

- c. Based on the results in part (b), show that $\hat{\beta}_1 = (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 \mathbf{Y}$ when $\mathbf{X}'_1 \mathbf{X}_2 = \mathbf{0}$.
- 2. The theory of optimal linear *prediction* parallels closely the theory of optimal linear *estimation*. In this question you are asked to derive a fundamental result pertaining to the former.

Let $Y \in \mathbb{R}$ be a random response, and let $\mathbf{x} \in \mathbb{R}^p$ be a *random* predictor. We seek a linear predictor $\alpha + \mathbf{x}'\boldsymbol{\beta}$ that minimizes $E[(Y - \alpha - \mathbf{x}'\boldsymbol{\beta})^2]$ over all choice of $\alpha \in \mathbb{R}$ and $\boldsymbol{\beta} \in \mathbb{R}^p$. Such a predictor $\alpha + \mathbf{x}'\boldsymbol{\beta}$ is called a *best linear predictor* of Y.

Define $\mu_y = E(Y)$, $\mu_x = E(\mathbf{x})$, $\sigma_y^2 = var(Y)$, $\mathbf{V}_{xx} = Cov(\mathbf{x})$, and $\mathbf{V}_{xy} = Cov(\mathbf{x}, Y) = V'_{yx} = Cov(Y, \mathbf{x})'$. Without loss of generality, we will write an arbitrary linear predictor in the form $\alpha + (\mathbf{x} - \boldsymbol{\mu}_x)'\boldsymbol{\beta}$.

- a. Show that the optimal choice of α is simply $\hat{\alpha} = \mu_y$.
- b. Show that if β_* is a solution to the linear system

$$\mathbf{V}_{xx}oldsymbol{eta} = \mathbf{V}_{xyx}$$

then $\mu_y + (\mathbf{x} - \boldsymbol{\mu}_x)'\boldsymbol{\beta}_*$ is the best linear predictor of Y. [Hint: Without loss of generality, you may assume $\mu_y = 0$ and $\boldsymbol{\mu}_x = \mathbf{0}$ for this part.]

- c. Derive an expression for a 95% prediction interval for Y based on the best linear predictor in part (b). State any assumptions necessary for the validity of your interval.
- 3. Given the dataset $\{\mathbf{x}_i, y_i\}_{i=1}^n$, we wish to obtain a bootstrapped least-squares estimate for β under the model

(1)
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ E[\boldsymbol{\varepsilon}|\mathbf{X}] = \mathbf{0}, \ Var[\boldsymbol{\varepsilon}|\mathbf{X}] = \sigma^2 \mathbf{I}_n,$$

with $\mathbf{X} = [\mathbf{x}'_1, \dots, \mathbf{x}'_n]'$ and $\mathbf{Y} = [y_1, \dots, y_n]'$. Here, \mathbf{X} is $n \times p$ with $rank(\mathbf{X}) = p$.

Bootstrapping is a type of resampling where samples of the *same size* n are drawn, *with* replacement, from a single original sample. Let $\mathbf{u}_i \equiv (\delta_{ij})_{j=1}^n$ be a $1 \times n$ vector with zero entries apart from $u_{ii} = 1$, then we can select the *i*-th row of \mathbf{X} by $\mathbf{x}_i = \mathbf{u}_i \mathbf{X}$, or the *i*-th entry in \mathbf{Y} by $y_i = \mathbf{u}_i \mathbf{Y}$. Thus, if $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ are the corresponding bootstrap samples of \mathbf{X} and \mathbf{Y} , respectively, we can represent the bootstrap sample by a matrix of \mathbf{B} with rows that are similar to \mathbf{u}_i , but with *i* being sampled, and such that $\tilde{\mathbf{X}} = \mathbf{B}\mathbf{X}$ and $\tilde{\mathbf{Y}} = \mathbf{B}\mathbf{Y}$.

a. For the bootstrap sample $(\tilde{\mathbf{X}}, \tilde{\mathbf{Y}})$, we will calculate the *OLS* estimator which is called the bootstrapped least square estimator for β . Show that this bootstrapped least square estimator for β , say $\tilde{\beta}(\mathbf{B})$, is actually a *weighted* least square estimator from the original data. More specifically, show that $\tilde{\beta}(\mathbf{B})$ is the generalized least square estimator for β in

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ E[\boldsymbol{\varepsilon}|\mathbf{X}, \mathbf{B}] = \mathbf{0}, \ Var[\boldsymbol{\varepsilon}|\mathbf{X}, \mathbf{B}] = \sigma^2 \mathbf{W}(\mathbf{B})^{-1},$$

where the matrix $W(B)^{-1}$ is a function of the bootstrap sampling scheme, i.e., thus a function of B, and show that $W(B)^{-1}$ is a diagonal matrix.

b. Provide an expression for $w(B) \equiv \text{Diag}(W(B)^{-1})$, the vector consisting of diagonal elements of $W(B)^{-1}$. In addition, show that for its *i*-th element, we have

$$w(B)_i \sim Binomial\left(n, \frac{1}{n}\right), \ i = 1, \dots, n.$$

What does $w(\mathbf{B})_i$ represent?

- c. Since $\hat{\boldsymbol{\beta}}(\mathbf{B})$ depends on $\mathbf{w}(\mathbf{B})$, let us denote $\mathbf{w}(\mathbf{B})$ as \mathbf{w} and set $\hat{\boldsymbol{\beta}}(\mathbf{w}) \equiv \hat{\boldsymbol{\beta}}(\mathbf{B})$. Now regard $\hat{\boldsymbol{\beta}}(\mathbf{w})$ as a function of \mathbf{w} and use the delta method with a second order approximation around $E(\mathbf{w})$ to conclude that $E_w[\hat{\boldsymbol{\beta}}(\mathbf{w})] \approx \hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the OLS estimator for $\boldsymbol{\beta}$ in the original model in (1).
- d. Argue that with a positive probability $\hat{\beta}(\mathbf{w})$ might not exist. What can go wrong? Be as specific as possible.