Preliminary Exam

Partial Differential Equations
August 12, 2020

Name:

Student Id \#:

Instruction: Choose only five (out of six) problems to do. If you have tried all six problems, please indicate which five problems to be count.

Score:

Problem 1 -
Problem $3 \longrightarrow$
Problem $5 \longrightarrow$

Problem 2-
Problem $4 \longrightarrow$
Problem 6 \qquad

Total score

Problem 1 Using the method of characteristics to find the solution to

$$
\left\{\begin{aligned}
& u_{t}+2 u_{x}=u^{2} \\
& \text { in } \mathbb{R} \times(0, \infty), \\
& u(x, 0)=\cos x \\
& \text { on } \mathbb{R}
\end{aligned}\right.
$$

Is the solution you obtained globally defined? If not, at what time(s) does it blow up?

Problem 2 Find the entropy solution to the problem

$$
u_{t}+8 u^{3} u_{x}=0, \quad u(x, 0)=g(x), \quad x \in \mathbb{R}, \quad t>0
$$

where
(a)

$$
g(x)= \begin{cases}2 & \text { if } x<0 \\ -1 & \text { if } x \geq 0\end{cases}
$$

(b)

$$
g(x)= \begin{cases}-1 & \text { if } x<0 \\ 2 & \text { if } x \geq 0\end{cases}
$$

Problem 3: For $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $u(x)=\log \left(x_{1}^{2}+x_{2}^{2}\right)$, show that

$$
-\int_{\mathbb{R}^{2}} u \Delta \phi d x=4 \pi \phi(0)
$$

for any $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$.
Hint: $\int_{\mathbb{R}^{2}} u \Delta \phi d x=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash B_{\epsilon}} u \Delta \phi d x$ where $B_{\epsilon}=\left\{x \in \mathbb{R}^{2}:|x| \leq \epsilon\right\}$.

Problem 4: Show that

$$
u\left(x_{1}, x_{2}\right):=\log \left(\log \left(x_{1}^{2}+x_{2}^{2}\right)\right)
$$

is the unique (smooth) solution of the nonlinear boundary value problem

$$
\Delta v+|\nabla v|^{2}=0 \text { in } \Omega, \quad v=u \text { on } \partial \Omega
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded regular domain such that, $\bar{\Omega} \subset \operatorname{dom}(u)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}>1\right\}$.

Problem 5: Let $T>0$ be a given terminal time, $L>0$, and h be a continuous function on $[0, L]$. Consider the following initial-boundary-value problem

$$
\left\{\begin{align*}
u_{t t}-u_{x x}+u & =0 & & (x, t) \in(0, L) \times(0, T] \tag{*}\\
u(0, t), \quad u(L, t) & =0 & & t \in[0, T] \\
u(x, 0)=0, \quad u_{t}(x, 0) & =h(x) & & x \in(0, L)
\end{align*}\right.
$$

(i) Suppose that $u=u(x, t)$ is a smooth solution of $(*)$. Show that for each $t>0$,

$$
\int_{U} \frac{1}{2}\left[u_{t}(x, t)\right]^{2}+\frac{1}{2}\left|u_{x}(x, t)\right|^{2} \mathrm{~d} x \leq \int_{U} \frac{1}{2}[h(x)]^{2} \mathrm{~d} x .
$$

(ii) Prove that $(*)$ has at most one smooth solution. (Hint: Use the result from the previous part.)

Problem 6: Suppose that $\Omega \subset \mathbb{R}^{n}$ is open, bounded, and connected with a smooth boundary $\partial \Omega$. Let $T>0$ be a terminal time and recall the definitions of the parabolic cylinder $\Omega_{T}:=\Omega \times(0, T]$ and the parabolic boundary $\Gamma_{T}:=\bar{\Omega}_{T} \backslash \Omega_{T}$. Assume that $u=u(x, t)$ with $u \in C^{2}\left(\Omega_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ satisfies

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0 & & \text { in } \Omega_{T} \\
u(x, t) & =4(t-1)-t^{2} & & \text { on } \Gamma_{T}
\end{aligned}\right.
$$

Prove that $u(x, t) \leq 0$ for all $(x, t) \in \Omega_{T}$.

