Notation

$X_{n} \xrightarrow{\mathcal{D}} X$ denotes convergence in distribution. $N(\mu, \sigma)$ denotes normal distribution with mean μ and variance σ^{2}.

Questions

1. Let $U_{i}, i=1,2, \ldots$ be independent random variables, uniformly distributed over $(0,1)$.
(a) Set $M_{n}=\min _{i=1, \ldots, n} U_{i}$. Find $a_{n} \in \mathbb{R}$ such that $a_{n} M_{n}$ converges in distribution to a non-zero random variable.
(b) Let V_{n} denote the second smallest random variable among U_{1}, \ldots, U_{n}. Provide an expression for $P\left(V_{n}>x\right)$.
(c) Using the sequence a_{n} that you found in part (a), show that $a_{n} V_{n}$ converges in distribution.

Hint: The events $M_{n}>x$ and $V_{n}>x$ can be expressed in terms of the binomial random variable $N:=\#\left\{k \leq n: U_{k}>x\right\}$.
2. Suppose X_{1}, X_{2}, \ldots are independent identically distributed random variables. Prove that the following conditions are equivalent:
(a) $X_{n} / n \rightarrow 0$ almost surely.
(b) $E\left|X_{1}\right|<\infty$.
3. Suppose that X_{1}, X_{2}, \ldots are independent identically distributed random variables with $E\left(X_{1}\right)=0$ and $E\left(X_{1}^{4}\right)<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. If $\theta>3 / 4$, prove that $\frac{1}{n^{\theta}} S_{n} \rightarrow 0$ with probability one.
4. Suppose that X_{1}, X_{2}, \ldots are independent random variables with distributions

$$
P\left(X_{k}= \pm 1\right)=\frac{1}{2 k} \text { and } P\left(X_{k}=0\right)=\frac{1-k}{k} \text { for } k=1,2, \ldots
$$

Prove that

$$
\frac{1}{\sqrt{\ln n}} \sum_{k=1}^{n} X_{k} \xrightarrow{\mathcal{D}} N(0,1) .
$$

