Notation

 $X_n \xrightarrow{\mathcal{D}} X$ denotes convergence in distribution. $N(\mu, \sigma)$ denotes normal distribution with mean μ and variance σ^2 .

Questions

- 1. Let $U_i, i = 1, 2, ...$ be independent random variables, uniformly distributed over (0, 1).
 - (a) Set $M_n = \min_{i=1,\dots,n} U_i$. Find $a_n \in \mathbb{R}$ such that $a_n M_n$ converges in distribution to a non-zero random variable.
 - (b) Let V_n denote the second smallest random variable among U_1, \ldots, U_n . Provide an expression for $P(V_n > x)$.
 - (c) Using the sequence a_n that you found in part (a), show that a_nV_n converges in distribution.

Hint: The events $M_n > x$ and $V_n > x$ can be expressed in terms of the binomial random variable $N := \#\{k \le n : U_k > x\}.$

- 2. Suppose X_1, X_2, \ldots are independent identically distributed random variables. Prove that the following conditions are equivalent:
 - (a) $X_n/n \to 0$ almost surely.
 - (b) $E|X_1| < \infty$.
- 3. Suppose that X_1, X_2, \ldots are independent identically distributed random variables with $E(X_1) = 0$ and $E(X_1^4) < \infty$. Let $S_n = X_1 + \cdots + X_n$. If $\theta > 3/4$, prove that $\frac{1}{n^{\theta}}S_n \to 0$ with probability one.
- 4. Suppose that X_1, X_2, \ldots are independent random variables with distributions

$$P(X_k = \pm 1) = \frac{1}{2k}$$
 and $P(X_k = 0) = \frac{1-k}{k}$ for $k = 1, 2, \dots$

Prove that

$$\frac{1}{\sqrt{\ln n}} \sum_{k=1}^{n} X_k \xrightarrow{\mathcal{D}} N(0,1).$$