Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	(513) $556-4050$
Cincinnati OH 45221-0025	Fax	(513) $556-3417$

QUALIFYING EXAMINATION, AUGUST 18, 2020
In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

1. Let $E \subset \mathbb{R}$ be bounded and $f: E \rightarrow \mathbb{R}$ be uniformly continuous.
(a) Prove that f is bounded on E.
(b) Show that if f is assumed only to be continuous (instead of uniformly continuous), then it no longer follows that f is bounded.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable. Suppose $f(-1)=0, f(1)=0$, and that for all $x \in[-1,1]$, we have $f^{\prime \prime}(x) \geq 0$. Prove that for all $x \in[-1,1], f(x) \leq 0$.
3. For continuous function $f:[0,1] \rightarrow[0,1]$, must there exist x in that interval for which $f(x)=x$?
4. (a) For a function $f:[0, \infty) \rightarrow \mathbb{R}$, define what it means to say that $\lim _{x \rightarrow \infty} f(x)=a$ for some real a.
(b) Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous with $f(0)=0$ and $\lim _{x \rightarrow \infty} f(x)=1$. Prove that there exists a $c \in[0, \infty)$ such that $f(c)=\min _{x \in[0, \infty)} f(x)$.
5. (a) Define what it means to say that vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are linearly independent.
(b) Let A be an $n \times n$ matrix with real entries. If $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are eigenvectors of A with distinct real eigenvalues, use the definition to show that v_{1}, \ldots, v_{k} are linearly independent.
Hint: Use mathematical induction.
6. Let V be a finite-dimensional vector space over \mathbb{R}, equipped with an inner product $\langle\cdot, \cdot\rangle$. Show that the orthogonal complement of the span of a finite nonempty collection of vectors $\left\{v_{1}, \ldots, v_{k}\right\} \subseteq V$ is equal to the intersection of the subspaces that are orthogonal complements to the span of $\left\{v_{j}\right\}, j=1, \ldots, k$.
7. Let P_{2} be the collection of all polynomials in x with coefficients in \mathbb{R} with degree at most 2 , and let $T: P_{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T(p)=\left[\begin{array}{c}
p(1) \\
p^{\prime}(1)
\end{array}\right]
$$

where p^{\prime} is the derivative of polynomials $p \in P_{2}$. Prove that T is onto but not one-to-one. Determine the kernel and the image of T. (You do not need to prove that T is a linear map.)
8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Show that f is continuous at $(0,0)$.
(b) Compute $D_{(a, b)} f(0,0)$ for any $(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Here $D_{(a, b)} f(0,0)$ denotes the directional derivative of f at the point $(0,0)$ in the direction (a, b).
(c) Is f differentiable at $(0,0)$?

