

Department of Mathematical Sciences 4th Floor French Hall West PO Box 210025 Phone Cincinnati OH 45221-0025 Fax

(513) 556-4050 (513) 556-3417

QUALIFYING EXAMINATION, AUGUST 18, 2020

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

- **1.** Let $E \subset \mathbb{R}$ be bounded and $f: E \to \mathbb{R}$ be uniformly continuous.
 - (a) Prove that f is bounded on E.
 - (b) Show that if f is assumed only to be continuous (instead of uniformly continuous), then it no longer follows that f is bounded.
- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable. Suppose f(-1) = 0, f(1) = 0, and that for all $x \in [-1,1]$, we have $f''(x) \ge 0$. Prove that for all $x \in [-1,1]$, $f(x) \le 0$.
- **3.** For continuous function $f:[0,1] \to [0,1]$, must there exist x in that interval for which f(x) = x?
- 4. (a) For a function $f:[0,\infty)\to\mathbb{R}$, define what it means to say that $\lim f(x)=a$ for some real a.
 - (b) Suppose $f: [0,\infty) \to \mathbb{R}$ is continuous with f(0) = 0 and $\lim_{x \to \infty} f(x) = 1$. Prove that there exists a $c \in [0, \infty)$ such that $f(c) = \min_{x \in [0, \infty)} f(x)$.
- 5. (a) Define what it means to say that vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent.
 - (b) Let A be an $n \times n$ matrix with real entries. If $v_1, \ldots, v_k \in \mathbb{R}^n$ are eigenvectors of A with distinct real eigenvalues, use the definition to show that v_1, \ldots, v_k are linearly independent. *Hint:* Use mathematical induction.
- 6. Let V be a finite-dimensional vector space over \mathbb{R} , equipped with an inner product $\langle \cdot, \cdot \rangle$. Show that the orthogonal complement of the span of a finite nonempty collection of vectors $\{v_1, \ldots, v_k\} \subseteq V$ is equal to the intersection of the subspaces that are orthogonal complements to the span of $\{v_j\}, j = 1, \dots, k$.
- 7. Let P_2 be the collection of all polynomials in x with coefficients in \mathbb{R} with degree at most 2, and let $T: P_2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(p) = \begin{bmatrix} p(1) \\ p'(1) \end{bmatrix},$$

where p' is the derivative of polynomials $p \in P_2$. Prove that T is onto but not one-to-one. Determine the kernel and the image of T. (You do not need to prove that T is a linear map.)

8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{ if } (x,y) \neq (0,0), \\ \\ 0 & \text{ if } (x,y) = (0,0). \end{cases}$$

- (a) Show that f is continuous at (0,0).
- (b) Compute $D_{(a,b)}f(0,0)$ for any $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Here $D_{(a,b)}f(0,0)$ denotes the directional derivative of f at the point (0,0) in the direction (a,b).
- (c) Is f differentiable at (0,0)?

Date: Printed: August 3, 2020.