REAL ANALYSIS PRELIMINARY EXAM AUGUST 2020

Time: 2 hours 30 minutes.
Answer all problems and fully justify your work.

Question 1

(1) Suppose that $A, B \subset \mathbb{R}$ are bounded (not necessarily Lebesgue measurable) sets for which there exists $\alpha>0$ such that $|a-b| \geq \alpha$ for every $a \in A$ and $b \in B$. Prove that

$$
m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)
$$

(2) Let $E_{n} \subset \mathbb{R}$ be Lebesgue measurable sets for $n \in \mathbb{N}$. Show that

$$
E:=\left\{x \in \mathbb{R}: x \text { belongs to exactly two of the sets } E_{n}\right\}
$$

is also Lebesgue measurable.
Hint: One strategy is to use characteristic functions.
(3) State Egorov's Theorem without proof.
(4) Define the sequence $f_{n}:[0,1] \rightarrow \mathbb{R}$ by $f_{n}(x)=n$ for $0 \leq x \leq 1 / n$ and $f_{n}(x)=0$ for $1 / n<x \leq 1$. Identify a function $f:[0,1] \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ Lebesgue almost everywhere and prove Egorov's theorem in this special case.

Question 2

(1) State without proof the dominated convergence theorem.
(2) Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{4 t^{3}+12}{12 t^{6}+3 n t+2} d t=0
$$

Please turn over for remaining questions.

Question 3

(1) Carefully state Fubini's theorem and Tonelli's theorem.
(2) Fix an integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$. Define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\int_{-\infty}^{x} f(t) d t$. Show that if $c \in \mathbb{R}$ is fixed then $g(x+c)-g(x)$ is an integrable function of x and

$$
\int_{-\infty}^{\infty}(g(x+c)-g(x)) d x=c \int_{-\infty}^{\infty} f(t) d t
$$

(3) Given a set $A \subset \mathbb{R}^{2}$, recall the vertical and horizontal sections defined for each $x, y \in \mathbb{R}$ by

$$
\begin{aligned}
& A_{x}=\{y \in \mathbb{R}:(x, y) \in A\} . \\
& A^{y}=\{x \in \mathbb{R}:(x, y) \in A\} .
\end{aligned}
$$

Decide whether the following statements are true or false for an arbitrary set $A \subset \mathbb{R}^{2}$.
(a) If $m\left(A_{x}\right)=0$ for Lebesgue almost every x then $m\left(A^{y}\right)=0$ for Lebesgue almost every y.
(b) If $m\left(A_{x}\right)=0$ for all x then $m\left(A^{y}\right)=0$ for all y.

Question 4

(1) Define what it means for a function $f:[a, b] \rightarrow \mathbb{R}$ to be absolutely continuous.
(2) Prove that if $f, g:[a, b] \rightarrow \mathbb{R}$ are absolutely continuous and $\alpha, \beta \in \mathbb{R}$ then $\alpha f+\beta g$ is absolutely continuous.
(3) Prove that for any $\lambda, \mu \in \mathbb{R}$ there exists $f:[0,1] \rightarrow \mathbb{R}$ such that
(a) f is continuous,
(b) $f(0)=0$,
(c) $f(1)=\lambda$,
(d) for Lebesgue almost every x the derivative $f^{\prime}(x)$ exists and is equal to μ.
Hint: Consider a linear combination of the Cantor Lebesgue function and the identity function. Make sure to clearly state the properties of the Cantor Lebesgue function that you are using.
(4) Suppose that a function $f:[0,1] \rightarrow \mathbb{R}$ is absolutely continuous and has properties $(3)(\mathrm{b}),(3)(\mathrm{c}),(3)(\mathrm{d})$ listed above. Prove that $\lambda=\mu$.

