Statistical Methods Prelim Exam

 $1{:}30~\mathrm{pm}$ - $4{:}00~\mathrm{pm},$ Wednesday, August $12,\,2020$

- 1. Suppose X_1, X_2, \ldots, X_n is a random sample from the uniform distribution $U(\theta, \theta + 1)$, $\theta \in \mathcal{R}$. Suppose $n \geq 2$.
 - (a) Is there a unique minimum variance unbiased estimator (UMVUE) for θ ? If yes, please derive its explicit form. If not, please carefully justify your anser.
 - (b) Show the following test is a uniformly most powerful (UMP) size α test for $H_0: \theta \leq 0$ versue $H_1: \theta > 0$.

$$\phi(x) = \begin{cases} 0, & \min(X_1, X_2, \dots, X_n) < 1 - \alpha^{\frac{1}{n}} \text{ or } \max(X_1, X_2, \dots, X_n) < 1\\ 1, & \text{otherwise.} \end{cases}$$

2. Suppose we have a single observation X from a Cauchy (θ) distribution, where the density of X is given by

$$p(x|\theta) = \frac{1}{\pi [1 + (x - \theta)^2]},$$

for $-\infty < x < \infty$ and $-\infty < \theta < \infty$.

- (a) Suppose we wish to test $H_0: \theta = 0$ versus $H_1: \theta \neq 0$. Derive the likelihood ratio test (LRT) (simplest possible form) for this hypothesis, and find an explicit expression for the constant to make the test size α .
- (b) Compute the power function of the test in Part (a) and find the power at $\theta = 2$.
- (c) Is the test found in Part (a) unbiased? Justify your answer.
- 3. Suppose X_1, X_2, \ldots, X_n is a random sample from $Poisson(\theta)$ distribution, where θ is the mean parameter and $\theta > 0$ and $n \ge 1$.
 - (a) Find the Jeffreys prior for θ and derive the Bayes estimator δ of θ under the squared error loss. Is δ an unbiased estimator?
 - (b) Use the same Jeffreys prior derived in Part (a) and derive the Bayes estimator δ of θ under the scaled squared error loss $L_1(\theta, \delta) = E[(\theta \delta)^2/\theta]$.
- 4. Assume a simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, i = 1, ..., n, where Y_i 's are dependent variables and X_i 's are independent variables, β_0 and β_1 are unknown parameters to be estimated, and the random errors ϵ_i are assumed following $N(0, \sigma^2)$ identically and indpendently with σ^2 unknown. Let $\theta = (\beta_0, \beta_1, \sigma^2)$.
 - (a) Deirve the Fisher information matrix for θ .
 - (b) Derive the UMVUE for θ . Please carefully justify the derived estimator is the UMVUE.