Complex Analysis Prelim Exam UC Department of Math Jan 2020

- (1) Suppose (f_n) is a sequence of entire functions that converges locally uniformly in \mathbb{C} to a polynomial p with $m = \deg p > 0$. Prove that for all sufficiently large n, the number of zeroes of f_n (counted according to multiplicity) is at least m.
- (2) Suppose f is a meromorphic function (recall this is a function that is holomorphic except on a set of isolated points that are poles) on \mathbb{C} with $\lim_{z\to\infty} f(z) = 0$.

(a) Show that f has finitely many poles in \mathbb{C} .

(b) Use part (a) to show that f is a rational function. *Hint. Make adaptations to* f *to turn it into entire function* g*. Think carefully about the growth of* g *at* ∞ ? *What does this say about* g?

(3) Let T be the Möbius transformation that maps $i, -i, \infty$ to $\omega, \bar{\omega}, 1$ respectively, where $\omega := e^{2\pi i/3}$. Determine the following images:

- (a) $T(\{iy \mid y \in \mathbb{R}\}),$
- (b) $T(\mathbb{H})$ where $\mathbb{H} = \{z \in \mathbb{C} \mid \Re \mathfrak{e}(z) > 0\}$,
- (c) $T(\mathbb{D})$ where $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$
- (4) Let Γ be a piecewise smooth closed curve in $\mathbb{C} \setminus \mathbb{Z}$. Calculate

$$\int_{\Gamma} \frac{dz}{z(z^2 - 1)}.$$

Hint: there are different cases to consider depending on what the curve Γ *does.*