Preliminary Examination:
 LINEAR MODELS

Answer all questions and show all work.
Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points.

1. Consider the following linear regression model, called Model 1:

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \text { with } \varepsilon \sim N\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)
$$

where \mathbf{Y} is the n-dimensional response vector, \mathbf{X} is the $n \times(p+1)$ design matrix, and \mathbf{I}_{n} denotes the $n \times n$ identity matrix. The i th row of \mathbf{X} is $\left(1, x_{i 1}, \ldots, x_{i p}\right)^{\prime}$, for $i=1, \ldots, n$. We consider the following transformation: Define an $n \times(p+1)$ matrix \mathbf{Z} whose i th row is given below:

$$
\left(1, z_{i 1}, \ldots, z_{i p}\right)^{\prime}=\left(1, c_{1} x_{i 1}, \ldots, c_{p} x_{i p}\right)^{\prime} ; i=1, \ldots, n
$$

where c_{1}, \ldots, c_{p} are known and non-zero constants. We consider the following model, called Model 2:

$$
\mathbf{Y}=\mathbf{Z} \boldsymbol{\alpha}+\boldsymbol{\eta}, \text { with } \boldsymbol{\eta} \sim N\left(\mathbf{0}, \sigma_{\eta}^{2} \mathbf{I}_{n}\right)
$$

a. Derive the least squares estimator for $\boldsymbol{\alpha}$ in terms of \mathbf{X}.
b. Show that the fitted values under Model 1 and Model 2 are the same.
c. Derive the mean square errors (MSE) from Model 1 and Model 2, respectively. Are they the same?
2. Consider a general linear model (GLM), $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ with $k_{1}+k_{2}$ independent variables and $n \times 1$ vector of observations \mathbf{Y} of a response variable. Call it the full model.
Let $\boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}$ pe a $p=1+k_{1}+k_{2}$ dimensional vector parameter, with $\boldsymbol{\beta}_{1}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k_{1}}\right)^{\prime}$ and $\boldsymbol{\beta}_{2}=\left(\beta_{k_{1}+1}, \ldots, \beta_{p}\right)^{\prime}$. Let $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$ where \mathbf{X}_{1} is an $n \times\left(1+k_{1}\right)$ matrix whose first column has all entries 1's.

Consider also another GLM, $\mathbf{Y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\varepsilon$ for the same \mathbf{Y}. Call it the reduced model.
Assume that $\boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)$ under each model, where \mathbf{I}_{n} is the identity matrix of order n. Let $S S R(F)$ and $S S E(F)$, respectively, be the sum of squares of regression, and the sum of squares of errors for the full model, $S S R(R)$ be the sum of squares of regression for the reduced model, and let $S S R(2 \mid 1)=S S R(F)-S S R(R)$.
a. Write $S S E(F)$ as a quadratic form in $\mathbf{Y}, \mathbf{Y}^{\prime} \mathbf{A Y}$. Clearly define the matrix A. Find the distribution of $S S E(F)$ under the full model. You may give the distribution of a constant multiple of $S S E(F)$.
b. Find the distribution of $S S E(F)$ under the reduced model. You may give the distribution of a constant multiple of $S S E(F)$.
c. Write $S S R(2 \mid 1)$ as a quadratic form in $\mathbf{Y}, \mathbf{Y}^{\prime} \mathbf{B Y}$. Clearly define the matrix B. Find the distribution of $S S R(2 \mid 1) / \sigma^{2}$ under the reduced model.
d. Find the distribution of $S S R(2 \mid 1) / \sigma^{2}$ under the full model.
e. Let $M S R(2 \mid 1)=S S R(2 \mid 1) / k_{2}$, and $F=M S R(2 \mid 1) / M S E(F)$. Find the distribution of F under the reduced model. Show how it may be used to test the hypothesis $H_{0}: \boldsymbol{\beta}_{2}=0$ vs. $H_{1}: \boldsymbol{\beta}_{2} \neq 0$ in the full model.
3. Consider the following linear model:

$$
\begin{equation*}
Y_{i}=(i / n) \beta+\epsilon_{i}, i=1,2, \ldots, n, \tag{1}
\end{equation*}
$$

where the errors ϵ_{i} follow the time series model:

$$
\begin{equation*}
\epsilon_{i}=\rho \epsilon_{i-1}+\sqrt{1-\rho^{2}} e_{i}, \rho \in(-1,1) \tag{2}
\end{equation*}
$$

for $1<i \leq \infty$. And $\epsilon_{1}=\sqrt{1-\rho^{2}} e_{1}$. Assume that $\left\{e_{i}\right\}$ in (2) are iid random variables with $E\left(e_{i}\right)=0$ and $E\left(e_{i}^{2}\right)=\sigma^{2}$, and e_{i} independent of ϵ_{k} for $k<i$. In (1), we can interpret the observations as a combination of a linear time trend (without intercept for simplicity) and time series noise. To answer the questions, you may use the following algebraic facts:

- $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{i}^{n} 夭_{0} \rho^{i}=\frac{1-\rho^{n+1}}{1-\rho}$, where $|\rho| \neq 1$.
- $\sum_{i=1}^{\infty} i \rho^{i}=\frac{\rho}{(1-\rho)^{2}}$
- Consider two sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$. Assume that a_{i} is non-decreasing and nonnegative with

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{2}}{\sum_{i=1}^{n} a_{i}^{2}}=0
$$

Also assume that $\sum_{i=1}^{\infty} i\left|b_{i}\right|<\infty$ and $\sum_{i=1}^{\infty} b_{i} \neq 0$. Then as $n \rightarrow \infty$,

$$
\left.\sum_{1 \leq i<j}\left(a_{i} a_{j} b_{j-i} \approx \sum_{i=1}^{n} a_{i}^{2}\right) \sum_{j=1}^{\infty} \not \psi_{j}\right)(
$$

a. Find $\operatorname{cov}\left(\epsilon_{i}, \epsilon_{i+k}\right), k \geq 0$. Hint: You can use mathematical induction, i.e., considering the case of $i=1$ and $k=1, i=1$ and $k=2$, and generalize. Or, you may first write ϵ_{i} in terms of $\left\{e_{j}\right\}$ and then derive the covariance based on the independent random variables $\left\{e_{j}\right\}$.
b. Denote by $\hat{\beta}_{1}$ the ordinary least squares estimator of β. Derive $\hat{\beta}_{1}$ and find $\lim _{n \rightarrow \infty} n \operatorname{var}\left(\hat{\beta}_{1}\right)$.
c. Note that from (2) we have $\epsilon_{i}-\rho \epsilon_{i-1}=\sqrt{1-\rho^{2}} e_{i}$. Thus, we define Z_{i} as follows:

$$
\begin{equation*}
Z_{i}=Y_{i}-\rho \epsilon_{i-1}=(i \not n) \beta+\sqrt{1-\rho^{2}} e_{i} \tag{3}
\end{equation*}
$$

If Z_{i} 's were observed, we can use the model in (3) to estimate β. Denote by $\hat{\beta}_{2}$ this ordinary least squares estimator of β from this. Derive $\hat{\beta}_{2}$ and find $\lim _{n \rightarrow \infty} n \operatorname{var}\left(\hat{\beta}_{2}\right)$. Compare the latter with that in part (b).
d. Another method to estimate β is maximum likelihood estimation. Assume that $\left\{e_{i}\right\}$ are iid normally distributed. Derive the likelihood for parameters β, σ^{2}, ρ based on the model in (1) (i.e., we observe Y_{i} 's)? Hint: to avoid inverting the covariance matrix, you may consider the following:

$$
f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=f\left(\epsilon_{1}\right) f\left(\epsilon_{2} \mid \epsilon_{1}\right) f\left(\epsilon_{3} \mid \epsilon_{1}, \epsilon_{2}\right) \cdots f\left(\epsilon_{n} \mid \epsilon_{1}, \ldots, \epsilon_{n-1}\right)
$$

