
Prelim Exam Linear Models August 2021 

Preliminary Examination: 
LINEAR MODELS 

Answer all questions and show all work. 
Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points. 

1. Consider the following linear regression model, called Model 1: 

Y = Xβ + ε with ε ∼ N(0, σ� 
2In) 

where Y is the n-dimensional response vector, X is the n × (p + 1) design matrix, and In 

denotes the n × n identity matrix. The ith row of X is (1, xi1, . . . , xip)
0, for i = 1, . . . , n. 

We consider the following transformation: Defne an n × (p + 1) matrix Z whose ith row 
is given below: 

(1, zi1, . . . , zip)
0 = (1, c1xi1, . . . , cpxip)

0; i = 1, . . . , n 

where c1, . . . , cp are known and non-zero constants. We consider the following model, 
called Model 2: 

Y = Zα + η, with η ∼ N(0, σ2 ).η In

a. Derive the least squares estimator for α in terms of X. 

b. Show that the ftted values under Model 1 and Model 2 are the same. 

c. Derive the mean square errors (MSE) from Model 1 and Model 2, respectively. Are 
they the same? 

2. Consider a general linear model (GLM), Y = Xβ + ε with k1 + k2 independent variables 
and n × 1 vector of observations Y of a response variable. Call it the full model. � � 

β1Let β = be a p = 1+k1+k2 dimensional vector parameter, with β1 = (β0, β1, ..., βk1 )
0 

β2 

and β2 = (βk1+1, ..., βp)
0 . Let X = (X1, X2) where X1 is an n × (1 + k1) matrix whose 

frst column has all entries 1’s. 

Consider also another GLM, Y = X1β1 + ε for the same Y. Call it the reduced model. 

Assume that ε ∼ N(0, σ2In) under each model, where In is the identity matrix of order 
n. Let SSR(F ) and SSE(F ), respectively, be the sum of squares of regression, and the 
sum of squares of errors for the full model, SSR(R) be the sum of squares of regression 
for the reduced model, and let SSR(2|1) = SSR(F ) − SSR(R). 

a. Write SSE(F ) as a quadratic form in Y, Y0AY. Clearly defne the matrix A. Find 
the distribution of SSE(F ) under the full model. You may give the distribution of 
a constant multiple of SSE(F ). 
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b. Find the distribution of SSE(F ) under the reduced model. You may give the distri-
bution of a constant multiple of SSE(F ). 

c. Write SSR(2|1) as a quadratic form in Y, Y0BY. Clearly defne the matrix B. Find 
the distribution of SSR(2|1)/σ2 under the reduced model. 

d. Find the distribution of SSR(2|1)/σ2 under the full model. 

e. Let MSR(2|1) = SSR(2|1)/k2, and F = MSR(2|1)/MSE(F ). Find the distribu-
tion of F under the reduced model. Show how it may be used to test the hypothesis 
H0 : β2 = 0 vs. H1 : β2 =6 0 in the full model. 

3. Consider the following linear model: 

(1) Yi = (i/n)β + �i, i = 1, 2, . . . , n, 

where the errors �i follow the time series model: p
(2) �i = ρ�i−1 + 1 − ρ2ei, ρ ∈ (−1, 1), 

for 1 < i ≤ ∞. And �1 = 
p

1 − ρ2e1. Assume that {ei} in (2) are iid random variables 
with E(ei) = 0 and E(e2 

i ) = σ2 , and ei independent of �k for k < i. In (1), we can 
interpret the observations as a combination of a linear time trend (without intercept for 
simplicity) and time series noise. To answer the questions, you may use the following 
algebraic facts: 

P n n(n+1)(2n+1)• i2 = i=1 6 P n ρi 1−ρn+1

• = , where |ρ| 6= 1.i=0 1−ρ P∞ ρ• iρi = i=1 (1−ρ)2 

• Consider two sequences {ai} and {bi}. Assume that ai is non-decreasing and non-
negative with 

2a 
lim P n n 

2 = 0. 
n→∞ ai=1 iP∞ P∞Also assume that i|bi| < ∞ and bi =6 0. Then as n →∞,i=1 i=1 ! ! 

n ∞X X X 
aiaj bj−i ≈ a 2 

i bj . 
1≤i<j≤n i=1 j=1 

a. Find cov(�i, �i+k), k ≥ 0. Hint: You can use mathematical induction, i.e., consider-
ing the case of i = 1 and k = 1, i = 1 and k = 2, and generalize. Or, you may frst 
write �i in terms of {ej } and then derive the covariance based on the independent 
random variables {ej }. 

b. Denote by β̂  
1 the ordinary least squares estimator of β. Derive β̂  

1 and fnd limn→∞ nvar(β̂  
1). 
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c. Note that from (2) we have �i − ρ�i−1 = 1 − ρ2ei. Thus, we defne Zi as follows: p

(3) Zi = Yi − ρ�i−1 = (i/n)β + 1 − ρ2ei 

If Zi’s were observed, we can use the model in (3) to estimate β. Denote by β̂  
2 this 

ordinary least squares estimator of β from this. Derive β̂  
2 and fnd limn→∞ nvar(β̂  

2). 
Compare the latter with that in part (b). 

d. Another method to estimate β is maximum likelihood estimation. Assume that {ei}
are iid normally distributed. Derive the likelihood for parameters β, σ2 , ρ based 
on the model in (1) (i.e., we observe Yi’s)? Hint: to avoid inverting the covariance 
matrix, you may consider the following: 

f(�1, . . . , �n) = f(�1)f(�2|�1)f(�3|�1, �2) · · · f(�n|�1, . . . , �n−1). 
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