Preliminary Exam

FUll NAME:
ID Number:

Instruction: Choose only five (out of six) problems to do. Each problem is worth 20 points.

Scores:
\qquad
Problem 3 \qquad
Problem 5 \qquad

Problem 2
Problem 4 \qquad

Problem 6 \qquad

Total \qquad

1. Let $D \subset \mathbb{R}^{n}$ be open and bounded with smooth boundary. Show that any smooth solution u of the nonlinear problem

$$
\left\{\begin{aligned}
\Delta u+u^{2}(1-u) & =0 \\
u & \text { in } D, \\
=0 & \text { on } \partial D,
\end{aligned}\right.
$$

satisfies $0 \leq u(x) \leq 1$ for all $x \in \bar{D}$.
2. Let D be the open disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<4\right\}$ and suppose that $u \in C^{2}(D) \cap C(\bar{D})$ is harmonic in D, satisfying $u(0,0)=2$ and $u(0,1)=10$. Show that $u(x, y)$ cannot be non-negative for all (x, y) satisfying $x^{2}+y^{2} \leq 4$.
3. Let $L>0$ and $T>0$ be fixed. Assume that $u(x, t)$ is a smooth function that satisfies

$$
\left\{\begin{aligned}
& u_{t}-u_{x x}+c(x, t) u=0 \text { for }(x, t) \in(0, L) \times(0, T), \\
& u(0, t) \geq 0 \text { and } u(L, t) \geq 0 \text { for } 0<t<T \\
& u(x, 0) \geq 0 \\
& \text { for } 0<x<L
\end{aligned}\right.
$$

where $c(x, t)$ is any function satisfying $|c(x, t)| \leq M$ for all $(x, t) \in(0, L) \times(0, T)$, and some constant $M>0$. Show that

$$
u(x, t) \geq 0 \quad \text { for }(x, t) \in(0, L) \times(0, T)
$$

4. Let $T>0$ be a given terminal time, $L>0$, and h be a continuous function on $[0, L]$. Consider the following initial-boundary-value problem

$$
\left\{\begin{align*}
u_{t t}-u_{x x}+u^{3} & =0 & & \text { for }(x, t) \in(0, L) \times(0, T], \tag{*}\\
u(0, t)=0, \quad u(L, t) & =0 & & \text { for } t \in[0, T], \\
u(x, 0)=0, \quad u_{t}(x, 0) & =h(x) & & \text { for } x \in(0, L) .
\end{align*}\right.
$$

Suppose that $u=u(x, t)$ is a smooth solution of the problem $(*)$. Show that for each $t>0$,

$$
\int_{U} \frac{1}{2}\left[u_{t}(x, t)\right]^{2}+\frac{1}{2}\left|u_{x}(x, t)\right|^{2} \mathrm{~d} x \leq \int_{U} \frac{1}{2}[h(x)]^{2} \mathrm{~d} x .
$$

Hint: Multiply the equation by u_{t} and use an energy argument.
5. Let $\varepsilon>0$ and define for $x \in \mathbb{R}, g(x)= \begin{cases}1 & x<-\varepsilon, \\ \frac{\varepsilon-x}{2 \varepsilon} & -\varepsilon \leq x \leq \varepsilon, \\ 0 & x>\varepsilon .\end{cases}$
(a) Construct the entropy solution of the initial-value problem

$$
\left\{\begin{aligned}
u_{t}+u u_{x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\
u=g & \text { on } \mathbb{R} \times\{t=0\}
\end{aligned}\right.
$$

(b) Study what happens to the solution you constructed as $\varepsilon \rightarrow 0^{+}$.
6. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}+x, x>0, y>0\right\}$. Use the method of characteristics to find the solution $u(x, y)$ of the following problem

$$
\begin{cases}u_{x}+u_{y}+u=1 & \text { for }(x, y) \in \Omega \\ u\left(x, x+x^{2}\right)=\sin (x) & \text { for } x>0\end{cases}
$$

