Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	(513) $556-4050$
Cincinnati OH 45221-0025	Fax	(513) $556-3417$

MATHEMATICS QUALIFYING EXAM, AUGUST 17, 2021

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

1. Fix $a<b$ and consider a function $f:[a, b] \rightarrow[a, b]$. Assume that there is a constant k such that $0<k<1$ and $|f(x)-f(y)| \leq k|x-y|$ for all $x, y \in[a, b]$.
(a) Show that for each $x_{0} \in[a, b]$, the sequence $\left(x_{0}, f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right), \cdots\right)$ is a convergent sequence.
(b) Show that the limit of the above sequence is a fixed point of f.
(c) Show that f does not have any other fixed points in $[a, b]$.
2. Use the definitions to prove a theorem that if a sequence $\left\{f_{n}\right\}$ of real-valued continuous functions on \mathbb{R}^{d} converges uniformly to f, then f is continuous.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, $f(x) \rightarrow a \in \mathbb{R}$ and $f^{\prime}(x) \rightarrow b \in \mathbb{R}$ as $x \rightarrow \infty$. Show that $b=0$.
4. Show there exist two divergent series $\sum a_{n}$ and $\sum b_{n}$ of strictly positive terms such that if $c_{n}=$ $\min \left\{a_{n}, b_{n}\right\}$, then $\sum c_{n}$ converges. You may use examples of convergent or divergent series from undergraduate calculus course without proof.
5. Consider a real vector space $\operatorname{Bil}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}\right)$ of bilinear forms $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. For $i, j=1,2, \ldots, n$, let $f_{i j}$ be a bilinear form given by $f_{i j}(u, v)=\left\langle u, e_{i}\right\rangle\left\langle v, e_{j}\right\rangle$. (Here $u, v \in \mathbb{R}^{n}$, the inner product is the standard dot-product, and e_{1}, \ldots, e_{n} is the standard basis of \mathbb{R}^{n}. You do not need to verify that $f_{i j}$ is bilinear.)
(a) Prove that the set of n^{2} bilinear forms $\left\{f_{i j}: i, j=1, \ldots, n\right\}$ is linearly independent in $\operatorname{Bil}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}\right)$.
(b) Prove that every bilinear form $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear combination of $\left\{f_{i j}: i, j=1, \ldots, n\right\}$.
6. (a) Find the matrix of the linear map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates a given vector by θ radians counterclockwise, with respect to the standard basis.
(b) Let the hyperbola H be given by the equation $x y=1 / 4$. Find the equation of the hyperbola that is obtained by rotating H by $\pi / 6$ radians counterclockwise.
7. Suppose that V is a real vector space with the inner product $\langle\cdot, \cdot\rangle$. If $T: V \rightarrow V$ is a linear transformation with adjoint T^{*} and $W \subset V$ is a T-invariant subspace, prove that the orthogonal complement W^{\perp} is T^{*}-invariant.
8. Let $\mathcal{U} \subset \mathbb{R}^{p}$ be open, $f: \mathcal{U} \rightarrow \mathbb{R}^{p}$ be differentiable at point $\mathbf{c} \in \mathcal{U}$. Define $g: \mathcal{U} \rightarrow \mathbb{R}$ by $g(\mathbf{x})=f(\mathbf{x}) \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathcal{U}$. Show that g is differentiable at \mathbf{c} and

$$
D g(\mathbf{c})(\mathbf{u})=(D f(\mathbf{c})(\mathbf{u})) \cdot \mathbf{c}+f(\mathbf{c}) \cdot \mathbf{u} \quad \text { for all } \mathbf{u} \in \mathbb{R}^{p}
$$

