

 Department of Mathematical Sciences
 4th Floor French Hall West

 PO Box 210025
 Phone
 (513) 556-4050

 Cincinnati OH 45221-0025
 Fax
 (513) 556-3417

MATHEMATICS QUALIFYING EXAM, AUGUST 17, 2021

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

- **1.** Fix a < b and consider a function $f : [a, b] \to [a, b]$. Assume that there is a constant k such that 0 < k < 1 and $|f(x) f(y)| \le k |x y|$ for all $x, y \in [a, b]$.
 - (a) Show that for each $x_0 \in [a, b]$, the sequence $(x_0, f(x_0), f(f(x_0)), \cdots)$ is a convergent sequence.
 - (b) Show that the limit of the above sequence is a fixed point of f.
 - (c) Show that f does not have any other fixed points in [a, b].
- **2.** Use the definitions to prove a theorem that if a sequence $\{f_n\}$ of real-valued continuous functions on \mathbb{R}^d converges uniformly to f, then f is continuous.
- **3.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable, $f(x) \to a \in \mathbb{R}$ and $f'(x) \to b \in \mathbb{R}$ as $x \to \infty$. Show that b = 0.
- 4. Show there exist two divergent series $\sum a_n$ and $\sum b_n$ of strictly positive terms such that if $c_n = \min\{a_n, b_n\}$, then $\sum c_n$ converges. You may use examples of convergent or divergent series from undergraduate calculus course without proof.
- 5. Consider a real vector space $Bil(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$ of bilinear forms $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. For i, j = 1, 2, ..., n, let f_{ij} be a bilinear form given by $f_{ij}(u, v) = \langle u, e_i \rangle \langle v, e_j \rangle$. (Here $u, v \in \mathbb{R}^n$, the inner product is the standard dot-product, and $e_1, ..., e_n$ is the standard basis of \mathbb{R}^n . You do not need to verify that f_{ij} is bilinear.)
 - (a) Prove that the set of n^2 bilinear forms $\{f_{ij}: i, j = 1, ..., n\}$ is linearly independent in $Bil(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$.
 - (b) Prove that every bilinear form $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a linear combination of $\{f_{ij} : i, j = 1, ..., n\}$.
- 6. (a) Find the matrix of the linear map $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ that rotates a given vector by θ radians counterclockwise, with respect to the standard basis.
 - (b) Let the hyperbola H be given by the equation xy = 1/4. Find the equation of the hyperbola that is obtained by rotating H by $\pi/6$ radians counterclockwise.
- 7. Suppose that V is a real vector space with the inner product $\langle \cdot, \cdot \rangle$. If $T : V \to V$ is a linear transformation with adjoint T^* and $W \subset V$ is a T-invariant subspace, prove that the orthogonal complement W^{\perp} is T^* -invariant.
- 8. Let $\mathcal{U} \subset \mathbb{R}^p$ be open, $f: \mathcal{U} \to \mathbb{R}^p$ be differentiable at point $\mathbf{c} \in \mathcal{U}$. Define $g: \mathcal{U} \to \mathbb{R}$ by $g(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathcal{U}$. Show that g is differentiable at \mathbf{c} and

$$Dg(\mathbf{c})(\mathbf{u}) = (Df(\mathbf{c})(\mathbf{u})) \cdot \mathbf{c} + f(\mathbf{c}) \cdot \mathbf{u}$$
 for all $\mathbf{u} \in \mathbb{R}^p$.