REAL ANALYSIS PRELIMINARY EXAM AUGUST 2021

Time allowed: 2 hours 30 minutes.

Answer all problems and fully justify your work.

m denotes Lebesgue measure and \mathcal{M} Lebesgue measurable sets.

Unless otherwise specified, measurable means with respect to \mathcal{M} .

QUESTION 1

- (a) Show that if $f, g: \mathbb{R} \to \mathbb{R}$ are measurable functions, then f + g is also measurable.
- (b) Give an example of function $f \colon \mathbb{R} \to \mathbb{R}$ which is measurable but nowhere continuous. Briefly support your claims.
- (c) Suppose $E \subset \mathbb{R}$ is measurable with m(E) > 0. Must E contain an interval of positive length? Give a proof or counterexample.
- (d) Suppose $E \subset \mathbb{R}$ is measurable and contains an interval of positive length. Must m(E) > 0? Give a proof or counterexample.

QUESTION 2

- (a) Suppose $f_n: [0,1] \to \mathbb{R}$ is a sequence of integrable functions converging pointwise to an integrable function $f: [0,1] \to \mathbb{R}$. Is it necessarily true that $\int_0^1 f_n dm \to \int_0^1 f dm$? Give a proof or counterexample. (b) Carefully justifying your argument, evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{n^2 \cos x}{1 + n^3 \sqrt{x}} \, \mathrm{d}x.$$

QUESTION 3

(a) Let $f, g: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable functions. Show that

$$(x,t) \in \mathbb{R}^2 : \min(f(x), g(x)) \le t < \max(f(x), g(x))\}$$

is a Lebesgue measurable subset of \mathbb{R}^2 .

(b) Let $F_t = \{x \in \mathbb{R} : f(x) > t\}$ and $G_t = \{x \in X : g(t) > t\}$. Show that $(F_t \setminus G_t) \cup (G_t \setminus F_t) = \{x \in \mathbb{R} : \min(f(x), g(x)) \le t < \max(f(x), g(x))\}.$ (c) Show that $\int |f - g| dm = \int_{-\infty}^{\infty} m((F_t \setminus G_t) \cup (G_t \setminus F_t)) dt.$

QUESTION 4

- (a) Give the definition of what it means for a function $f: [0, 1] \to \mathbb{R}$ to be absolutely continuous.
- (b) Define $g: [0,1] \to \mathbb{R}$ by g(0) = 0 and $g(x) = x \cos \frac{\pi}{x}$ if $x \neq 0$. Show that g is continuous on [0,1] but not absolutely continuous.
- (c) Let $f: [0,1] \to \mathbb{R}$ be absolutely continuous and $E \subset [0,1]$ such that m(E) = 0. Show that m(f(E)) = 0.