REAL ANALYSIS PRELIMINARY EXAM AUGUST 2021

Time allowed: 2 hours 30 minutes.
Answer all problems and fully justify your work.
m denotes Lebesgue measure and \mathcal{M} Lebesgue measurable sets.
Unless otherwise specified, measurable means with respect to \mathcal{M}.

Question 1

(a) Show that if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are measurable functions, then $f+g$ is also measurable.
(b) Give an example of function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is measurable but nowhere continuous. Briefly support your claims.
(c) Suppose $E \subset \mathbb{R}$ is measurable with $m(E)>0$. Must E contain an interval of positive length? Give a proof or counterexample.
(d) Suppose $E \subset \mathbb{R}$ is measurable and contains an interval of positive length. Must $m(E)>0$? Give a proof or counterexample.

Question 2

(a) Suppose $f_{n}:[0,1] \rightarrow \mathbb{R}$ is a sequence of integrable functions converging pointwise to an integrable function $f:[0,1] \rightarrow \mathbb{R}$. Is it necessarily true that $\int_{0}^{1} f_{n} \mathrm{~d} m \rightarrow \int_{0}^{1} f \mathrm{~d} m$? Give a proof or counterexample.
(b) Carefully justifying your argument, evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n^{2} \cos x}{1+n^{3} \sqrt{x}} \mathrm{~d} x
$$

Question 3

(a) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be Lebesgue measurable functions. Show that

$$
\left\{(x, t) \in \mathbb{R}^{2}: \min (f(x), g(x)) \leq t<\max (f(x), g(x))\right\}
$$

is a Lebesgue measurable subset of \mathbb{R}^{2}.
(b) Let $F_{t}=\{x \in \mathbb{R}: f(x)>t\}$ and $G_{t}=\{x \in X: g(t)>t\}$. Show that $\left(F_{t} \backslash G_{t}\right) \cup\left(G_{t} \backslash F_{t}\right)=\{x \in \mathbb{R}: \min (f(x), g(x)) \leq t<\max (f(x), g(x))\}$.
(c) Show that $\int|f-g| \mathrm{d} m=\int_{-\infty}^{\infty} m\left(\left(F_{t} \backslash G_{t}\right) \cup\left(G_{t} \backslash F_{t}\right)\right) \mathrm{d} t$.

Question 4

(a) Give the definition of what it means for a function $f:[0,1] \rightarrow \mathbb{R}$ to be absolutely continuous.
(b) Define $g:[0,1] \rightarrow \mathbb{R}$ by $g(0)=0$ and $g(x)=x \cos \frac{\pi}{x}$ if $x \neq 0$. Show that g is continuous on $[0,1]$ but not absolutely continuous.
(c) Let $f:[0,1] \rightarrow \mathbb{R}$ be absolutely continuous and $E \subset[0,1]$ such that $m(E)=0$. Show that $m(f(E))=0$.

