Statistical Methods Prelim Exam

1:00 pm - 3:30 pm, Friday, August 20, 2021

1. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample on X which has a $N\left(\mu, \sigma^{2}\right)$ distribution, where σ^{2} is known. Let \bar{X} represent the sample mean. Consider the two-sided hypotheses

$$
H_{0}: \mu=0 \text { versus } H_{1}: \mu \neq 0
$$

(a) Consider the test with the critical function

$$
\phi_{1}(x)= \begin{cases}1, & \bar{X}>z_{\alpha} \cdot \sigma / \sqrt{n} \\ 0, & \text { otherwise }\end{cases}
$$

where z_{α} represents the upper 100α-percentile of a standard normal distribution. Show that the test based on $\phi_{1}(x)$ has a size of α but it is not an unbiased test.
(b) Consider the test with the following critical function

$$
\phi_{2}(x)= \begin{cases}1, & |\bar{X}|>z_{\alpha / 2} \cdot \sigma / \sqrt{n} \\ 0, & \text { otherwise }\end{cases}
$$

Show that the test based on $\phi_{2}(x)$ is an unbiased size α test. (Hint: Check the monotonicity of the power function.)
2. Let X_{1}, \ldots, X_{n} be iid random sample from $U(\theta, \theta+1)$, where $-\infty<\theta<\infty$ and it is unknown. Assume a prior distribution for θ given by the probability density function, for $-\infty<\theta<\infty$,

$$
\pi(\theta)=\frac{1}{2} e^{-|\theta|}
$$

Find the Bayes estimate of θ with respect to the squared error loss (SEL) function.
3. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu_{1}, \sigma^{2}\right)$, and let Y_{1}, \ldots, Y_{n} be a random sample from $N\left(\mu_{2}, \sigma^{2}\right)$, independent of the previous sample. Assume μ_{1} and μ_{2} are unknown, $-\infty<\mu_{1}, \mu_{2}<\infty$, and $\sigma^{2}>0$ is known.
(a) Find the UMVUE of $\eta=P(X<Y)$ where X and Y are independent with distributions $N\left(\mu_{1}, \sigma^{2}\right)$ and $N\left(\mu_{2}, \sigma^{2}\right)$, respectively, which are the same as the ones given above.
(b) Is the UMVUE of η a consistent estimator?
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population having the following density

$$
f\left(x ; \theta_{1}, \theta_{2}\right)= \begin{cases}\left(\theta_{1}+\theta_{2}\right)^{-1} \exp \left(-x / \theta_{1}\right), & x>0 \\ \left(\theta_{1}+\theta_{2}\right)^{-1} \exp \left(x / \theta_{2}\right), & x \leq 0\end{cases}
$$

where $\theta_{1}>0$ and $\theta_{2}>0$ are unknown.
(a) Show in detail that the maximum likelihood estimator (MLE) of $\theta=\left(\theta_{1}, \theta_{2}\right)$ is

$$
\hat{\theta}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=n^{-1}\left(\sqrt{T_{1} T_{2}}+T_{1}, \sqrt{T_{1} T_{2}}+T_{2}\right)
$$

where $T_{1}=\sum_{i=1}^{n} X_{i} I\left(0<X_{i}<\infty\right)$ and $T_{2}=-\sum_{i=1}^{n} X_{i} I\left(-\infty<X_{i}<0\right)$.
(b) Obtain a nondegenerated asymptotic distribution of the MLE of θ.
(c) Find a likelihood ratio (LR) test of size α for testing $H_{0}: \theta_{1}=\theta_{2}$ versus $H_{1}: \theta_{1} \neq \theta_{2}$. Clearly write down the likelihood functions under H_{0}, H_{1}, the likelihood ratio, and the decision rule.

