Topology Prelim

20 August 2021

- 1. Let $\mathcal{F} = \{(a, b] : a, b \in \mathbb{R}, a < b\}$ and let \mathcal{T} be the topology on \mathbb{R} generated by \mathcal{F} .
 - (a) Show that \mathcal{T} is strictly finer than the usual absolute value metric topology on \mathbb{R} .
 - (b) Show that $(\mathbb{R}, \mathcal{T})$ is not connected.
 - (c) Consider f(x) = -x as a mapping $f : (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$. Is this function continuous or not? Why?
- 2. Let A and B be disjoint compact sets in a Hausdorff space Z. Prove that there are disjoint open sets U, V containing A, B respectively.
- 3. This question is about the notion of connectedness.
 - (a) What does it mean to say that a topological space is locally pathconnected?
 - (b) Can a space be connected but not locally path connected? Explain.
 - (c) Let X be a locally path-connected topological space. For each $x \in X$ let C(x) be the connected component of X containing x. Prove that for each x, C(x) is open.
- 4. Let T be the three dimensional torus constructed by identifying each pair of opposite faces of $[0,1]^3 \subset \mathbb{R}^3$. Show that $\pi_1(T) = \mathbb{Z}^3$.
- 5. Define $Q_n = \bigcup_{i=1}^n U_i$ where U_i is the circle in \mathbb{R}^2 with radius i/2 and center (i/2, 0). Define $S_n = \bigvee_{i=1}^n S^1$ to be the space obtained by gluing n copies of the circle S^1 to a single point. Q_n has the topology it gets as a subspace of \mathbb{R}^2 with the usual metric topology and S_n has the quotient topology. Show that $Q_n \cong S_n$ for $1 \le n < \infty$ but that $Q_\infty := \bigcup_{i=1}^\infty U_i$ and $S_\infty := \bigvee_{i=1}^\infty S^1$ are not homeomorphic.