PhD Preliminary Exam in Algebra - January 2021

Full marks may be obtained by complete answers to 4 questions.
Time allowed - 2 1/2 hours
No calculators, cell phones or other electronic devices allowed
(1) Let R be a principal ideal domain. Prove the following assertions.
(a) Every non-zero prime ideal of R is maximal.
(b) If S is an integral domain and $\phi: R \rightarrow S$ is a surjective ring homomorphism, then either ϕ is an ismorphism or S is a field.
(c) If $R[x]$ is a prinicpal ideal domain, then R is a field.
(2) (a) Prove that $x^{N}+1$ is irreducible in $\mathbb{Z}[x]$ if and only N is a power of 2 .
(b) Let $N=2^{n}$, let q be a prime such that $q \equiv 1(\bmod 2 N)$. Prove that $x^{N}+1$ splits completely in F_{q}.
(3) Let $f(x)=x^{3}-11 \in \mathbb{Q}[x]$
(a) Describe the splitting field E of $f(x)$ over \mathbb{Q}
(b) Show that $[E: \mathbb{Q}]=6$ and that the Galois group G is isomorphic to S_{3}.
(c) Describe all the subgroups of G and the corresponding intermediate fields.
(4) Give examples (with appropriate justification) of finite extensions of fields $F \subset E$ where:
(a) The extension is normal but not separable
(b) The extension is separable but not normal
(c) There are infinitely many intermediate fields K with $F \subset K \subset E$.
(5) Let ζ be a primitive 5 -th root of unity.
(a) How many intermediate fields are there between \mathbb{Q} and $\mathbb{Q}(\zeta)$?
(b) Let $u=\zeta+1 / \zeta$. Show that u is a root of a quadratic equation and that $\zeta^{2}-u \zeta+1=0$. How does this relate to your answer to (a)?
(c) Deduce that the fifth roots of unity are of the form

$$
\zeta=\frac{-1+\epsilon \sqrt{5} \pm \sqrt{-10-2 \epsilon \sqrt{5}}}{4}
$$

where $\epsilon= \pm 1$.

