Prelim Exam

Linear Models

Spring 2021

Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points.

1. Consider the model

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}; \ i = 1, 2; \ j = 1, 2, 3$$

with $E(\epsilon_{ij}) = 0$ and $var(\epsilon_{ij}) = \sigma^2 \mathbf{I}$.

- a. This model can be written in matrix/vector form as $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\beta} = (\mu, \tau_1, \tau_2)'$. Define \mathbf{Y}, \mathbf{X} and $\boldsymbol{\epsilon}$.
- b. For the X in your answer to part (a), can we find the inverse of X'X? Why or why not? Explain.
- c. Find an ordinary least square (OLS) estimator $\hat{\beta}$. Note: You need to represent the solution explicitly as a function of Y_{ij} 's. You need to show the derivation. Claiming or stating results from courses won't be granted credits, but you can use the formula of the normal equation directly without deriving it.
- d. For $\hat{\beta}$ you've obtained in part (c), find $E(\hat{\beta})$.
- 2. In many applications, there can be multiple response variables, in which case the linear regression model can be written as

$$\mathbf{Y} = \mathbf{XB} + \mathbf{E},$$

where $\mathbf{Y} = (Y_{ij})_{1 \le i \le n, 1 \le j \le d}$ is a matrix in $\mathbb{R}^{n \times d}$, $\mathbf{X} = (x_{ij})_{1 \le i \le n, 1 \le j \le p}$ is a matrix in $\mathbb{R}^{n \times p}$, $\mathbf{B} = (\beta_{ij})_{1 \le i \le p, 1 \le j \le d}$ is a matrix in $\mathbb{R}^{p \times d}$, and $\mathbf{E} = (\epsilon_{ij})_{1 \le i \le n, 1 \le j \le d}$ is a matrix in $\mathbb{R}^{n \times d}$.

Assume that the errors ϵ_{ij} , $1 \leq i \leq n$, $1 \leq j \leq d$, are independent normal random variables with mean zero and variance σ^2 . In this case, the least squares estimator is defined as

$$\hat{\mathbf{B}} = \underset{\mathbf{B} \in \mathbb{R}^{p \times d}}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{B}\|^2,$$

where for a matrix $\mathbf{A} = (a_{ij})$, the norm is defined as $\|\mathbf{A}\| = (\sum_i \sum_j a_{ij}^2)^{1/2}$. Suppose you observe only the response matrix \mathbf{Y} and the design matrix \mathbf{X} .

a. Derive the least square estimator $\hat{\mathbf{B}}$ and $\hat{\sigma}^2$.

- b. Construct a test for the null hypothesis that the first column of X is an irrelevant variable. You need to derive the test statistic, its distribution under the null hypothesis and explain the decision rule (i.e., when to reject).
- 3. Consider a simple linear regression model,

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n,$$

where $\{\epsilon_i\}$ are iid $N(0, \sigma^2)$ random variables.

Let $\mathbf{Y}' = (Y_1, Y_2, \dots, Y_n), \boldsymbol{\beta}' = (\beta_0, \beta_1), \text{ and } \mathbf{X}' = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}$. Furthermore, for known constants $\{z_i : i = 1, \dots, n\}$, define $\mathbf{Z}' = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_n \end{bmatrix}$, and assume that $\mathbf{Z}'\mathbf{X}$ is a non-singular matrix.

- a. Show that the so-called instrumental-variable estimator, $\tilde{\mathbf{b}} = (\mathbf{Z}'\mathbf{X})^{-1}\mathbf{Z}'\mathbf{Y}$, is an unbiased estimator of the vector $\boldsymbol{\beta}$.
- b. Find the sampling distribution of $\tilde{\mathbf{b}} = (\tilde{b}_0, \tilde{b}_1)'$, including its mean vector and variancecovariance matrix. Furthermore, let $\hat{\mathbf{b}} = (\hat{b}_0, \hat{b}_1)'$ be the OLS estimator of β . Prove that $var(\tilde{b}_1) \ge var(\hat{b}_1)$.
- c. Let $P_{\mathbf{Z}}$ denote the projection matrix on the column space $\mathcal{C}(\mathbf{Z})$.

c-i. Show that $\mathbf{Y}'(\mathbf{I} - \mathbf{P}_{\mathbf{Z}})\mathbf{Y}/\sigma^2$ has a chi-squared distribution. Give its degrees of freedom and the non-centrality parameter.

c-ii. What is the value of the non-centrality parameter when $\beta_1=0?$ Justify your answer.

d. Let the residuals corresponding to the instrumental-variable estimator $\tilde{\mathbf{b}}$ be denoted by

$$\tilde{\mathbf{e}} = \mathbf{Y} - \mathbf{X}\tilde{\mathbf{b}}.$$

d-i. Derive the joint distribution of \tilde{b} and \tilde{e} , and answer whether \tilde{b} and \tilde{e} are independently distributed.

d-ii. Now let Q denote the $n \times n$ matrix so that $\tilde{\mathbf{e}} = \mathbf{Q}\mathbf{Y}$. Show that the matrix Q is not symmetric. Is the matrix Q idempotent? Explain why or why not.

d-iii. Give a necessary and sufficient condition for the distribution of $\tilde{\mathbf{e}}'\tilde{\mathbf{e}}/\sigma^2$ to be a chi-squared distribution.