1. Consider a sequence of non-negative random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ such that X_{n} converges almost surely to another random variable X. For each of the following two statements: provide a proof if it is true, and a counterexample if it is not.
(i) $\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{X_{n}}{1+X_{n}}\right)=\mathbb{E}\left(\frac{X}{1+X}\right)$.
(ii) $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X$.
2. Let $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of independent Bernoulli random variables, each with parameter $p_{n}=n /\left(1+n^{1+\beta}\right)$ for some $\beta>0$. Find the range of β such that both the following statements hold simultaneously:
(i) $B_{n} \rightarrow 0$ in probability, but not almost surely, as $n \rightarrow \infty$.
(ii) $B_{n^{2}} \rightarrow 0$ almost surely, as $n \rightarrow \infty$.
3. Assume $\lambda \in(0,1)$. For each $n \in \mathbb{N}$, let $\left\{B_{n, i}\right\}_{i \in \mathbb{N}}$ be a sequence of i.i.d. Bernoulli random variables with parameters λ / n, and consider

$$
T_{n}:=\min \left\{k \in \mathbb{N}: B_{n, k}=1\right\}
$$

(a) Find an expression for $\mathbb{P}\left(T_{n} \geq k\right)$ for $k \in \mathbb{N}$.
(b) Find a sequence of $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that T_{n} / a_{n} converges in distribution to a non-degenerate random variable. Identify the distribution of the limit.
4. Suppose that $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ are independent random variables and each X_{j} is uniformly distributed over $(0, j)$. Find $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\frac{X_{1}+\cdots+X_{n}-b_{n}}{a_{n}}
$$

converges in distribution to a standard normal random variable.
(a) Provide a complete statement of the central limit theorem you choose to apply here.
(b) Provide the details on how the conditions are satisfied with the $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ that you find.

