Statistical Methods Prelim Exam

1:00 pm - 3:30 pm, Thursday, January 7, 2021

1. Let X_1, \ldots, X_n be a sample from the *inverse Gaussian* distribution, denoted by $I(\mu, \tau)$, with its density

$$\sqrt{\frac{\tau}{2\pi x^3}} \exp\left[-\frac{\tau}{2x\mu^2}(x-\mu)^2\right], \quad x > 0, \ \tau, \mu > 0.$$

- (a) Find the moment generating function of X_1 and show that $V_1 = \frac{\tau}{\mu^2 X_1} (X_1 \mu)^2 \sim \chi_1^2$.
- (b) Show that $\overline{X} = \sum_{i=1}^{n} X_i / n \sim I(\mu, n\tau)$.
- (c) Show that there exists a uniformly most powerful (UMP) test for testing $H_0: \mu \leq \mu_0$ versus. $H_1: \mu > \mu_0$ when τ is known.
- (d) Show that there exists a UMP test for testing $H_0: \tau \leq \tau_0$ versus. $H_1: \tau > \tau_0$ when μ is known.
- 2. The random variable X has a probability distribution given by

where $0 . (Note: a result that you may need is <math>\sum_{i=0}^{\infty} ip^i = p/(1-p)^2$.)

- (a) Let U be an unbiased estimator of zero. Show that $U(X+1) = -XU(0), X = 0, 1, 2, 3, \dots$
- (b) Show that there is **no** uniformly minimum variance unbiased estimator (UMVUE) for p.
- 3. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with the probability density function specified below,

$$p_{\theta}(x) = a^{\theta} \theta x^{-\theta-1}, \quad x \ge a_{\theta}$$

where $\theta > 0$ is unknown and a > 0 is a known constant.

- (a) Find the maximum likelihood estimator $(\hat{\theta})$ of θ .
- (b) Find the asymptotic distribution $\sqrt{n}(\hat{\theta} \theta)$.
- (c) Show $\hat{\theta}$ is a biased estimator for θ . Derive the UMVUE $\tilde{\theta}$ of θ .
- (d) Find the asymptotic distribution of $\sqrt{n}(\tilde{\theta} \theta)$.
- 4. Let X_1, X_2, \ldots, X_n be a random sample of binary random variables with $P(X_i = 1) = p, i = 1, \ldots, n$ and 0 .
 - (a) Obtain the Bayes estimator of p(1-p) when the prior is the beta distribution with known parameter (α, β) , under the squared error loss.
 - (b) Discuss the bias and consistency of the Bayes estimator obtained in (a).
 - (c) Let $[p(1-p)]^{-1}I(0 be an improper prior density for <math>p$. Show that the posterior of p given X_i 's is a (proper) probability density provided that the sample mean $\bar{X} \in (0, 1)$.
 - (d) Under the squared error loss, find the Bayes estimator of p(1-p) under the improper prior given in (c).