Department of Mathematical Sciences $4^{\text {th }}$ Floor French Hall West
PO Box $210025 \quad$ Phone (513) 556-4050
Cincinnati $\mathrm{OH} 45221-0025 \quad$ Fax (513) 556-3417

QUALIFYING EXAMINATION, MAY 7, 2021

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^{n} is n-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$ for $x \in \mathbb{Q}$ and $f(x)=0$ if $x \notin \mathbb{Q}$. Find all points at which f is continuous. Justify both why f is continuous at the points you chose and why it is not continuous at all other points.
2. Let $\mathbb{R} \xrightarrow{f} \mathbb{R}$ be continuously differentiable. Prove that $f_{[a, b]}$ is Lipschitz continuous for any closed interval $[a, b] \subset \mathbb{R}$.
3. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(0)=1, f(x)=0$ for x irrational and $f(m / n)=1 / n$ when m and n are natural numbers with no common factors except 1 . Show that f is Riemann integrable and the value of its integral is 0 .
Hint: For any $N \geq 1$ consider the set of points $\{x \in[0,1]: f(x)>1 / N\}$ and the set of points $\{x \in[0,1]: f(x) \leq 1 / N\}$.
4. Prove that $\sum_{n=1}^{\infty} \frac{x^{2}}{x^{2}-n^{2}}$ converges pointwise in $\mathbb{R} \backslash \mathbb{Z}$ and converges uniformly in $[-1 / 2,1 / 2]$.
5. Let Q be a 3×3 real orthogonal matrix. Prove that:
(a) Each eigenvalue λ of Q has $|\lambda|=1$.
(b) If $\operatorname{det}(Q)=1$, then 1 must be among the eigenvalues of Q.
(c) When $\operatorname{det}(Q)=1, \vec{x} \mapsto Q \vec{x}$ is rotation about a line in \mathbb{R}^{3}.
6. Prove that the following two conditions are equivalent for a function $f:(0, \infty) \rightarrow \mathbb{R}$:
(i) The set of functions $\{x, f(x), x f(x)\}$ is linearly dependent in the real vector space of real functions on $(0, \infty)$.
(ii) There exist $a \in \mathbb{R}$ and $b \geq 0$ such that $f(x)=\frac{a x}{b+x}$.
7. Let A, B, C be $n \times n$ matrices and $\mathbf{0}$ be a zero $n \times n$ matrix. Prove that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
\mathbf{0} & C
\end{array}\right]=\operatorname{det}(A C) .
$$

8. Let $\mathcal{U} \subset \mathbb{R}^{p}$ be open, $f: \mathcal{U} \rightarrow \mathbb{R}^{q}$ be differentiable at point $\mathbf{c} \in \mathcal{U}$. For fixed $\mathbf{v} \in \mathbb{R}^{q}$, define $g: \mathcal{U} \rightarrow \mathbb{R}$ by $g(\mathbf{x})=f(\mathbf{x}) \cdot \mathbf{v}$ for all $\mathbf{x} \in \mathcal{U}$. Show that g is differentiable at \mathbf{c} and

$$
D g(\mathbf{c})(\mathbf{u})=(D f(\mathbf{c})(\mathbf{u})) \cdot \mathbf{v} \quad \text { for all } \mathbf{u} \in \mathbb{R}^{p}
$$

