

Department of Mathematical Sciences 4th Floor French Hall West PO Box 210025 Cincinnati OH 45221-0025 Fax

Phone (513) 556-4050 (513) 556-3417

QUALIFYING EXAMINATION, MAY 7, 2021

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers and \mathbb{R}^n is *n*-dimensional Euclidean space. Proofs, or counter examples, are required for all problems.

- **1.** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ for $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. Find all points at which f is continuous. Justify both why f is continuous at the points you chose and why it is not continuous at all other points.
- 2. Let $\mathbb{R} \xrightarrow{f} \mathbb{R}$ be continuously differentiable. Prove that $f_{[a,b]}$ is Lipschitz continuous for any closed interval $[a,b] \subset \mathbb{R}.$
- **3.** Define $f: [0,1] \to \mathbb{R}$ by f(0) = 1, f(x) = 0 for x irrational and f(m/n) = 1/n when m and n are natural numbers with no common factors except 1. Show that f is Riemann integrable and the value of its integral is 0.

For any $N \ge 1$ consider the set of points $\{x \in [0,1] : f(x) > 1/N\}$ and the set of points Hint: $\{x \in [0,1] : f(x) \le 1/N\}.$

- 4. Prove that $\sum_{n=1}^{\infty} \frac{x^2}{x^2 n^2}$ converges pointwise in $\mathbb{R} \setminus \mathbb{Z}$ and converges uniformly in [-1/2, 1/2].
- **5.** Let Q be a 3×3 real orthogonal matrix. Prove that:
 - (a) Each eigenvalue λ of Q has $|\lambda| = 1$.
 - (b) If det(Q)=1, then 1 must be among the eigenvalues of Q.
 - (c) When det(Q) = 1, $\vec{x} \mapsto Q\vec{x}$ is rotation about a line in \mathbb{R}^3 .
- **6.** Prove that the following two conditions are equivalent for a function $f:(0,\infty)\to\mathbb{R}$:
 - (i) The set of functions $\{x, f(x), xf(x)\}$ is linearly **dependent** in the real vector space of real functions on $(0,\infty)$.
 - (ii) There exist $a \in \mathbb{R}$ and $b \ge 0$ such that $f(x) = \frac{ax}{b+x}$.
- 7. Let A, B, C be $n \times n$ matrices and **0** be a zero $n \times n$ matrix. Prove that

$$\det \begin{bmatrix} A & B \\ \mathbf{0} & C \end{bmatrix} = \det(AC).$$

8. Let $\mathcal{U} \subset \mathbb{R}^p$ be open, $f: \mathcal{U} \to \mathbb{R}^q$ be differentiable at point $\mathbf{c} \in \mathcal{U}$. For fixed $\mathbf{v} \in \mathbb{R}^q$, define $g: \mathcal{U} \to \mathbb{R}$ by $g(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{v}$ for all $\mathbf{x} \in \mathcal{U}$. Show that g is differentiable at c and

$$Dg(\mathbf{c})(\mathbf{u}) = (Df(\mathbf{c})(\mathbf{u})) \cdot \mathbf{v}$$
 for all $\mathbf{u} \in \mathbb{R}^p$.

Date: Printed: April 24, 2021.