STAT Qualifying Exam

May 2021

Statistics Qualifying Examination

Answer all questions and show all work. This exam is closed-note/book. You need to use a calculator.

1. Let X_1 and X_2 have the joint probability density function (pdf)

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 15x_1^2x_2 & 0 < x_1 < x_2 < 1, \\ 0 & \text{elsewhere.} \end{cases}$$

- (a) Calculate the probability $Pr(X_1 + X_2 \le 1)$.
- (b) Find the marginal pdf of X_2 , $f_{X_2}(x_2)$.
- (c) Show that $f_{X_2}(x_2)$ is a (legitimate) probability density function.
- (d) Calculate $E\left(\frac{1}{X_2}\right)$.
- 2. Suppose that the random variable X has a Poisson distribution such that

$$50 \cdot \Pr(X=1) = \Pr(X=2).$$

- (a) Find the mean and the variance of X.
- (b) Calculate the probability $Pr(X \ge 1)$.
- (c) Calculate the probability Pr(75 < X < 125) using the Chebyshev's inequality.
 - Chebyshev's inequality: If X has a finite variance σ^2 with mean μ , $\Pr(|X \mu| \ge k\sigma) \le 1/k^2$ for every k > 0.
- 3. Let X_1, \ldots, X_n be a random sample from a Possion distribution with the probability mass function as $P(X = x) = \frac{e^{-\theta}\theta^x}{x!}, x = 0, 1, 2, \ldots$, and $0 < \theta < \infty$.
 - (a) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ .
 - (b) Is the MLE $\hat{\theta}$ an efficient estimator of θ ? Clearly justify your answer.

- (c) Find the MLE $\hat{\tau}$ of $\tau = P(X \le 1)$.
- (d) Determine the limiting distribution of $\sqrt{n}(\hat{\tau} \tau)$.
- 4. Let X_1, \ldots, X_n be a random sample from a $Gamma(3, \theta)$ distribution, where $0 < \theta < \infty$.
 - (a) Find the exact likelihood ratio test of size α for testing the hypotheses $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Clearly state the likelihood ratio, the rejection region, and the decision rule.
 - (b) For $\theta_0 = 3$ and n = 5, specify the rejection region so that the test that rejects the null hypothesis has a significant level 0.05.
 - (c) Obtain the power function of the test in (a) with $\theta_0 = 3$, n = 5, and $\alpha = 0.05$.
- 5. Consider the normal error regression model as follows: $Y_i = \beta X_i + \epsilon_i$, i = 1, ..., n where X_i 's are known constants, ϵ_i 's are *i.i.d.* $N(0, \sigma^2)$, and β and σ^2 are parameters to be estimated.
 - (a) Derive the maximum likelihood estimators (MLE) of β and σ^2 , say $\hat{\beta}$ and $\hat{\sigma}^2$, respectively.
 - (b) Show that $\hat{\beta}$ is a linear combination of Y_i 's, i.e, $\hat{\beta} = \sum_{i=1}^n k_i Y_i$ and that $\hat{\beta}$ is an unbiased estimator (UE) of β .
 - (c) Show that $Var(\hat{\beta}) = \sigma^2 / \sum_{i=1}^n X_i^2$.
 - (d) Let $e_i = Y_i \hat{Y}_i$, i = 1, ..., n. Show that $\sum_{i=1}^n X_i e_i = 0$.
- 6. The electric power consumed each month by a chemical plant is thought to be related to the average ambient temperature X_1 , the number of days in the month X_2 , the average product purity X_3 , and the tons of product produced X_4 . The past year's historical data are available. Consider all 4 variables as covariates in the multiple regression model with normal errors. Use the following information, with n = 12.

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model		4957.24074			
Error					
Corrected Total		6656.25000			

Parameter Estimates

	F	Parameter	Standar	rd		
	Variable	DF	Estima	te Ei	ror t Valu	e $Pr > t $
	Intercept	1	-102.7132	24 207.858	-0.4	
	x1	1	0.6053	0.368	390 1.6	4 0.1448
	x2	1	8.9236	54 5.300)52 1.6	8 0.1361
	x3	1	1.4374	16 2.39	0.6	0 0.5668
	x4	1	0.0136	61 0.733	.0.0382	2 0.9857
Number in						
Model	R-Square	C(p)	AIC	MSE	S	SE Variables in Model
1	0.6446	1.7471	67.4074	236.57679	2365.767	786 x2
1	0.5647	3.9371	69.8397	289.73308	2897.330)79 x1
1	0.0024	19.3586	79.7922	664.03676	6640.367	765 x3
1	0.0001	19.4218	79.8198	665.56870	6655.686	695 x4
2	0.7314	1.3665	66.0471	198.66239	1787.961	48 x1 x2
2	0.6463	3.6989	69.3479	261.56262	2354.063	660 x2 x3
2	0.6447	3.7437	69.4032	262.77130	2364.94	69 x2 x4
2	0.6412	3.8385	69.5194	265.32872	2387.958	345 x1 x3
3	0.7447	3.0003	67.4353	212.38659	1699.092	274 x1 x2 x3
3	0.7316	3.3612	68.0386	223.33621	1786.689	070 x1 x2 x4
3	0.6466	5.6930	71.3406	294.07956	2352.636	647 x2 x3 x4
3	0.6414	5.8343	71.5143	298.36753	2386.940	025 x1 x3 x4
4	0.7447	5.0000	69.4347	242.71561	1699.009	026 x1 x2 x3 x4

- (a) Predict power consumption for a month and compute a 95% confidence interval for the predicted power consumption when $X_1 = 75$, $X_2 = 24$, $X_3 = 90$, and $X_4 = 98$.
- (b) Test the hypothesis $H_0: \beta_1 = \beta_3 = 0$ v.s. $H_1:$ not H_0 .
- (c) Test the hypothesis $H_0: \beta_1 = \beta_3 = 0$ v.s. $H_1: \beta_1 = 0$.
- (d) Perform a stepwise regression using a $\alpha = .05$ level of significance.
- 7. Disk drive substrates may affect the amplitude of the signal obtained during readback. A manufacturer compares four substrates: aluminum(A), nickel-plated aluminum (B), and two types of glass (C and D). Sixteen disk drives will be made, four using each of the substrates. The design responses (in microvolts) are given in the following table (data from Nelson 1993; Greek letters indicate day)

	Operator					
Machine	1	2	3	4		
1	$A\alpha = 8$	$C\gamma = 11$	$D\delta = 2$	$B\beta = 8$		
2	$C\delta = 7$	$A\beta = 5$	$B\alpha = 2$	$D\gamma = 4$		
3	$D\beta = 3$	$B\delta = 9$	$A\gamma = 7$	$C\alpha = 9$		
4	$B\gamma = 4$	$D\alpha = 5$	$C\beta = 9$	$A\delta = 3$		

The grand mean is $\bar{Y}_{...} = 6$, and the level means for the four substrates are:

 $A: 5.75 \quad B: 5.50 \quad C: 9.00 \quad D: 3.75$

- (a) What kind of design is used for the experiment? Give a model and state the assumptions.
- (b) Calculate the estimates of the treatment (i.e. the substrates) effects.
- (c) Part of the ANOVA table from SAS is given below. Test if the *substrates* are different from each other in terms of their effects on the response. To get full credits, state the hypotheses, obtain the test statistic, and draw your conclusion ($\alpha = 0.05$).

Source	DF	Squares	Mean Square	F Value	Pr > F
Model	12	100.5000000	8.3750000	1.17	0.5098
Error	3	21.5000000	7.1666667		
Corrected Total	15	122.0000000			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
row	??	21.5000000	7.16666667	1.00	0.5000
col	??	14.00000000	4.666666667	0.65	0.6335
substrate	??	??	??	??	??
greek	??	3.50000000	1.16666667	0.16	0.9149

(df_1, df_2)	(3, 3)	(3, 12)	(3,15)	(4, 3)	(4, 12)	(4,15)
$F_{0.025;df_1,df_2}$	15.4392	4.4742	4.1528	15.1010	4.1212	3.8043
$F_{0.05;df_1,df_2}$	9.2766	3.4903	3.2874	9.1172	3.2592	3.0556

- (d) If the machine were not considered as blocks and not included in ANOVA model, will the test results in part (c) change? Justify your answer.
- 8. An engineer suspects that the surface finish of a metal part is influenced by the feed rate and the depth of cut. He selects three feed rates and four depths of cut. He then conducts a factorial experiment and obtains the following data.

		Depth of	Cut (in)	
Feed rate (in/min)	1	2	3	4
1	74, 64, 60	79, 68, 73	82, 88, 92	99, 104, 96
2	92, 86, 88	98, 104, 88	99, 108, 95	104, 110, 99
3	99, 98, 102	104, 99, 95	108, 110, 99	114, 111, 107

Some summary statistics are give below.

Grand mean: 94.333

feed	mean		depth	mean
1	81.583	I	1	84.778
2	97.583	I	2	89.778
3	103.833	I	3	97.889
		I	4	104.889
feed	depth	mean		
1	1	66.000		
1	2	73.333		
1	3	87.333		
1	4	99.667		
2	1	88.667		
2	2	96.667		
2	3	100.667		
2	4	104.333		
3	1	99.667		
3	2	99.333		
3	3	105.667		
3	4	110.667		

Suppose the following statistical model is used to fit the data.

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}; k = 1, 2, 3$$

where τ_i (i = 1, 2, 3) and β_j (j = 1, 2, 3, 4) are the effects of feed rate and cut depth, and $(\tau\beta)_{ij}$ are their interactions. For parameter estimation, we impose the following constraints as in the lecture notes: $\sum_i \tau_i = \sum_j \beta_j = \sum_i (\tau\beta)_{ij} = \sum_j (\tau\beta)_{ij} = 0$.

The ANOVA of the data was done in SAS and the output is shown.

- (a) What are the estimates of τ_1 and $(\tau\beta)_{22}$?
- (b) Test if the interaction between feed rate and cut depth is significant. To get full credits, give a test statistic, the corresponding *p*-value, and your conclusion.

Dependent	Varial	ble: finish			
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	11	5842.667	531.151515	18.49	<.0001
Error	24	689.333	28.722222		
Co Total	35	6532.000			
ource	DF	Type I SS	Mean Square	F Value	Pr > F
feed	2	3160.500	1580.250	55.02	<.0001
depth	3	2125.111	708.370	24.66	<.0001
feed*dept1	h 6	557.056	92.843	3.23	0.0180

- (c) If we plan to perform pairwise comparison for *all* treatment combinations, which procedure should we use? What is the corresponding critical difference (using $\alpha = 5\%$)? *Note:* No table of critical values from distributions is given for this part, and thus you don't need to calculate the final numerical answer. Instead, please give the formula of the critical difference and specify the components in the formula, including but not limited to the degrees of freedom, significance level, and the distribution.
- (d) Use the Bonferroni method to compare the following treatments (i.e. these *four specific* level combinations of speed and depth): (2,3), (2,4), (3,3) and (3,4), *pairwisely* (Use $\alpha = 6\%$). Calculate the critical difference and report your results of comparison. You can report the result as we have seen in SAS output by labeling significantly different combinations with different Latin letters.

df	2	3	6	24
$t_{0.005;df}$	9.9248	5.8409	3.7074	2.7969
$t_{0.01;df}$	6.9646	4.5407	3.1427	2.4922
$t_{0.015;df}$	5.6428	3.8960	2.8289	2.3069
$t_{0.03;df}$	3.8964	2.9505	2.3133	1.9740