Topology Prelim — Spring 2021

April 29, 2021

- 1. Let X be a topological space with topology \mathcal{T} . For $x, y \in X$ we say that $x \sim y$ if for every $U \in \mathcal{T}$ we have that either $\{x, y\} \cap U$ is empty or else both x and y belong to U.
 - (a) Prove that \sim is an equivalence relation on X.
 - (b) Let X_0 be the collection of all \sim -equivalence classes in X, and let $\pi : X \to X_0$ be the natural projection map, that is, $\pi(x)$ is the \sim -equivalence class of x. Prove that there is a topology on X_0 such that π is a continuous open map.
 - (c) Prove that the topological space X_0 from (b) has the following separation property: whenever $a, b \in X_0$ with $a \neq b$, there is an open set $W \subset X_0$ such that $a \in W$ and $b \notin W$, or $b \in W$ and $a \notin W$
- 2. Suppose X is a topological space and $\infty \notin X$ is a point. Define $X_{\infty} = X \cup \{\infty\}$ and define a topology on X_{∞} be declaring
 - i $U \subset X_{\infty}$ is open if U is an open subset of X,
 - ii $U \subset X_{\infty}$ is open if $X_{\infty} \setminus U$ is a closed, compact subset of X,
 - iii X_{∞} is open.

The space X_{∞} with this topology is the known as the *one point compactification* of X.

- (a) Show the above conditions actually describe a topology for X_{∞} .
- (b) Show that with this topology X_{∞} is, in fact, compact.
- (c) Show that X_{∞} is Hausdorff if X is both locally compact and Hausdorff.
- 3. Let $\mathcal{F} = \{[a, \infty) | a \in \mathbb{R}\}\)$ and let \mathcal{T} be the topology on \mathbb{R} generated by \mathcal{F} . Prove that a sequence $(x_k)_k$ of real numbers converges to a real number $z \in \mathbb{R}$ in this topology if and only if for each $\epsilon > 0$ there is a positive integer n_0 such that whenever k is an integer that is larger than n_0 , we have $z \leq x_k \leq z + \epsilon$.

- 4. What does it mean to say $A \subset X$ is *deformation retract* of X? Show that $S^{n-1} \subset \mathbb{R}^n \setminus \{\mathbf{0}\}$ is a deformation retract of $\mathbb{R}^n \setminus \{\mathbf{0}\}$. Is $S^0 = \{\pm 1\}$ a deformation retract of \mathbb{R} (why or why not)?
- 5. Answer either one but not both of these questions.
 - 5A (a) Provide a counterexample: if K and L are two compact, connected surfaces with the same Euler characteristic, then they are homeomorphic.
 - (b) If K and L have the same orientability, does the above become true? Explain.
 - 5B (a) Let T be a torus, and $x_0 \in T$ be any point. What is the universal cover of (T, x_0) ?
 - (b) Show that there exists a double cover from T to a Klein bottle K. Conclude that K has the same universal cover as T.