PRELIMINARY EXAM IN ALGEBRA - AUGUST 2022

Time allowed : 2 hours and 30 minutes
No calculators, cell phones, or other electronic devices allowed

1. Prove or disprove:
(a) $\mathbb{Z}[x]$ is a principal ideal domain.
(b) Let $R=\mathbb{Z}[\sqrt{2}]$ and Q be the field of fractions of R. Then $Q \cong \mathbb{Q}[\sqrt{2}]$.
2. Prove that the following functions are irreducible in $\mathbb{Z}[x]$:
(a) $f(x)=x^{4}+9 x^{3}+6 x^{2}+15 x+3$
(b) $g(x)=x^{3}-9 x+9$
3. Let E / F be an algebraic field extension.
(a) What does it mean for E to be a splitting field for some $f(x) \in F[x]$?
(b) What does it mean for E / F to be a normal extension?
(c) Prove that if E is a splitting field then it is normal.
4. Let F be a field of characteristic zero, and let $\alpha_{1}, \ldots, \alpha_{4}$ be indeterminates - or you can assume they are algebraically independent elements over F. Let

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

and let $L=F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right), K=F\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$.
(a) Show that L / K is Galois. What is the Galois group?
(b) Use the structure of L / K to demonstrate a degree 4 extension M / N such that there exists no quadratic extension of N contained in M.
5. Let $R=\mathbb{Z}[x]$. Prove that any strictly ascending sequence of ideals $I_{1} \subsetneq I_{2} \subsetneq \ldots$ of R must be finite.

