1. Let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of independent random variables, each with

$$
\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=\left(\frac{1}{i}\right)^{1 / 5}, i \in \mathbb{N} .
$$

Consider the events

$$
A_{i, k}:=\left\{X_{i}=X_{i+1}=\cdots+X_{i+k-1}=1\right\}, i, k \in \mathbb{N},
$$

and the following statement:
'There exists $k_{0} \in \mathbb{N}$ such that with probability one, the event $A_{i, k_{0}}$ occurs for infinitely many $i \in \mathbb{N}$, and the event $A_{i, k_{0}+1}$ occurs for finitely many $i \in \mathbb{N}$ only.'
Is the statement true? Justify your answer (and identify the value of $k_{0}$ if it is true).
2. Let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be i.i.d. random variables with

$$
\mathbb{P}\left(X_{i}>x\right)=\frac{1}{x}, x \geq 1
$$

Consider

$$
Z_{n}:=\sum_{i=1}^{n} \mathbf{1}_{\left\{X_{i}>n\right\}}, n \in \mathbb{N} .
$$

Show that $Z_{n} \Rightarrow Z$ as $n \rightarrow \infty$ for a non-degenerate random variable $Z$ and identify its distribution. (Here and below, ' $\Rightarrow$ ' stands for convergence in distribution.)
Hint: you may use the fact that for $\mathbb{Z}$-valued random variables, $Z_{n} \Rightarrow Z$ as $n \rightarrow \infty$ if and only if $\lim _{n \rightarrow \infty} \mathbb{P}\left(Z_{n}=k\right)=\mathbb{P}(Z=k)$ for each $k \in \mathbb{Z}$.
3. Let $\left\{X_{i}\right\}_{i \in \mathbb{N}}$ be i.i.d. random variables with $\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2, i \in \mathbb{N}, S_{n}:=X_{1}+\cdots+$ $X_{n}, n \in \mathbb{N}$, and $a, b \in \mathbb{R}$.
(a) Compute $\operatorname{Var}\left(a S_{n}+b S_{2 n}\right)$.
(b) Show that

$$
\frac{a S_{n}+b S_{2 n}}{\sqrt{n}} \Rightarrow \mathcal{N}\left(0, \sigma_{a, b}^{2}\right)
$$

as $n \rightarrow \infty$, where the right-hand side stands for the normal distribution with zero mean and variance $\sigma_{a, b}^{2}$. Justify your answer and provide an explicit expression of $\sigma_{a, b}^{2}$.
4. Let $X$ be a non-negative random variable. We are interested in the quantity $L(\beta):=$ $\mathbb{E} e^{\beta X}, \beta \geq 0$, which by definition might be infinite.
(a) Show that if $L(\beta)=\infty$ for some $\beta>0$, then $L\left(\beta^{\prime}\right)=\infty$ for all $\beta^{\prime}>\beta$.
(b) Suppose

$$
\mathbb{P}(X>x) \leq C e^{-\alpha x} \text { for all } x>0
$$

for some constants $C>0, \alpha>0$. Show that $L(\beta)<\infty$ for all $\beta \in[0, \alpha)$.

