Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	$(513) 556-4050$
Cincinnati OH 45221-0025	Fax	$(513) 556-3417$

MATHEMATICS QUALIFYING EXAM, AUGUST 16, 2022

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers, \mathbb{R}^{n} is n-dimensional Euclidean space with the usual dot product $\mathbf{u} \cdot \mathbf{v}=\sum_{j=1}^{m} u_{i} v_{i}$. Proofs, or counter examples, are required for all problems.

1. Let (X, d) be a metric space and $\gamma:[0,1] \rightarrow X$ be a continuous function such that $\gamma(0) \neq \gamma(1)$. Let $f: X \rightarrow \mathbb{R}$ be a continuous function such that $f(\gamma(0))=1$ and $f(\gamma(1))=0$. Prove that $[0,1] \subset f(X)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x$ for rational x and $f(x)=-x$ for irrational x. Prove that f is not Riemann integrable on the interval $[0,1]$.
3. Let $a<b$ and $G:(a, b) \rightarrow \mathbb{R}$, and let $a<x_{0}<b$. Prove that if there are two real numbers $\alpha>0$ and $\tau>1$ such that for each $x \in(a, b)$ we have $\left|G(x)-G\left(x_{0}\right)\right| \leq \alpha\left|x-x_{0}\right|^{\tau}$, then G is differentiable at x_{0}.
4. Set $f(x)=\sum_{k=0}^{\infty} \frac{\cos (k x)}{k^{2}+1}$ for $x \in \mathbb{R}$. Prove that f is well defined and continuous on \mathbb{R}.
5. Let V be a vector space, and $U, W \subset V$ be subspaces such that $U \cap W=\{0\}$ and $U+W=V$. Let T be a linear transformation such that $T u=u$ for all $u \in U$, and $T w=2 w$ for all $w \in W$. Prove that $T^{2} v+2 v=3 T v$ for all $v \in V$.
6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation that preserves lengths, i.e., $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(a) Show that T preserves orthogonality, i.e., if $\mathbf{x} \cdot \mathbf{y}=0$, then $T(\mathbf{x}) \cdot T(\mathbf{y})=0$.
(b) Show that the columns of the matrix representation of T in the standard basis of \mathbb{R}^{n} are mutually orthogonal.
7. Let $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 2 & 1 & -1 \\ -1 & -1 & 1\end{array}\right)$. Derive the formula for the enries of the matrix A^{n} as explicit functions of $n \geq 3$.
8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$.
(a) Give the definition of the derivative $D f(c): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
(b) Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Use the definition to calculate the derivative $D L(c)$ for every $c \in \mathbb{R}^{n}$.
