

## MATHEMATICS QUALIFYING EXAM, AUGUST 16, 2022

## Four Hour Time Limit

In this exam  $\mathbb{R}$  denotes the field of all real numbers,  $\mathbb{R}^n$  is *n*-dimensional Euclidean space with the usual dot product  $\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^m u_i v_i$ . Proofs, or counter examples, are required for all problems.

- **1.** Let (X, d) be a metric space and  $\gamma : [0, 1] \to X$  be a continuous function such that  $\gamma(0) \neq \gamma(1)$ . Let  $f : X \to \mathbb{R}$  be a continuous function such that  $f(\gamma(0)) = 1$  and  $f(\gamma(1)) = 0$ . Prove that  $[0, 1] \subset f(X)$ .
- **2.** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by f(x) = x for rational x and f(x) = -x for irrational x. Prove that f is not Riemann integrable on the interval [0, 1].
- **3.** Let a < b and  $G : (a, b) \to \mathbb{R}$ , and let  $a < x_0 < b$ . Prove that if there are two real numbers  $\alpha > 0$  and  $\tau > 1$  such that for each  $x \in (a, b)$  we have  $|G(x) G(x_0)| \le \alpha |x x_0|^{\tau}$ , then G is differentiable at  $x_0$ .
- **4.** Set  $f(x) = \sum_{k=0}^{\infty} \frac{\cos(kx)}{k^2 + 1}$  for  $x \in \mathbb{R}$ . Prove that f is well defined and continuous on  $\mathbb{R}$ .
- 5. Let V be a vector space, and  $U, W \subset V$  be subspaces such that  $U \cap W = \{0\}$  and U + W = V. Let T be a linear transformation such that Tu = u for all  $u \in U$ , and Tw = 2w for all  $w \in W$ . Prove that  $T^2v + 2v = 3Tv$  for all  $v \in V$ .
- **6.** Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear transformation that preserves lengths, i.e.,  $||T(\mathbf{x})|| = ||\mathbf{x}||$  for all  $\mathbf{x} \in \mathbb{R}^n$ .
  - (a) Show that T preserves orthogonality, i.e., if  $\mathbf{x} \cdot \mathbf{y} = 0$ , then  $T(\mathbf{x}) \cdot T(\mathbf{y}) = 0$ .
  - (b) Show that the columns of the matrix representation of T in the standard basis of  $\mathbb{R}^n$  are mutually orthogonal.

7. Let  $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$ . Derive the formula for the enries of the matrix  $A^n$  as explicit functions of  $n \ge 3$ . (entries)

- 8. Let  $f : \mathbb{R}^n \to \mathbb{R}^m$  and  $c \in \mathbb{R}^n$ .
  - (a) Give the definition of the derivative  $Df(c) \colon \mathbb{R}^n \to \mathbb{R}^m$ .
  - (b) Let  $L: \mathbb{R}^n \to \mathbb{R}^m$  be a linear map. Use the definition to calculate the derivative DL(c) for every  $c \in \mathbb{R}^n$ .