Statistical Methods Prelim Exam

1:00 pm - 3:30 pm, Monday, August 15, 2022

UMVUE: uniformly minimum variance unbiased estimator

UMP: uniformly most powerful

i.i.d.: identically and independently distributed

1. Let X_1, X_2, \dots, X_n $(n \ge 5)$ be i.i.d. having the common probability density function

 $\sigma^{-1} \exp\{-(x-\mu)/\sigma\}I(x>\mu),$

where μ is an unknown parameter, $-\infty < \mu < \infty$, but σ is known with $0 < \sigma < \infty$. The indicator function $I(\cdot) = 1$ if $x > \mu$ and 0 otherwise. Let $U = X_{(1)}$ be the smallest order statistic.

- (a) Show that $U = X_{(1)}$ is the complete sufficient statistic for μ .
- (b) Define $\overline{X} = \sum_{i=1}^{n} X_i/n$. Find the conditional expectation of \overline{X} , given that U = u, i.e., $E[\overline{X} | U = u]$.
- (c) Find the conditional expectation of $X_1 + e^{|X_1 X_3|} e^{|X_2 X_4|}$, given that U = u, i.e., $E[X_1 + e^{|X_1 X_3|} e^{|X_2 X_4|} | U = u]$.
- 2. Let X_1, \ldots, X_n be an i.i.d. random sample from the normal population as $\mathcal{N}(\mu, \sigma^2)$.
 - (a) Suppose that the hypotheses to be tested are

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$

where μ_0 is a known constant and assume $\sigma^2 > 0$ is known. Does there exist a UMP test of size α for the above hypotheses? If yes, derive the UMP test. If no, clearly justify your answer.

- (b) Now let the estimand be μ^2 . Show that when σ is unknown, $\delta_n = \overline{X}^2 \frac{S^2}{n(n-1)}$ is the UMVUE, where $\overline{X} = \sum_{i=1}^n X_i/n$ and $S^2 = \sum_{i=1}^n (X_i \overline{X})^2$.
- (c) Derive the limiting distribution of $[\delta_n \mu^2]$ as $n \to \infty$.
- 3. A Bayes action $\hat{\theta}(\mathbf{x})$ of a parameter θ based on a sample \mathbf{x} is defined as an estimator $\delta(\mathbf{x})$ that minimizes the posterior expected loss, $\rho(\pi, \hat{\theta}(\mathbf{x})) = \int_{\Theta} L(\hat{\theta}(\mathbf{x}), \theta) \pi(\theta | \mathbf{x}) d\theta$.
 - (a) Prove that the posterior mean of θ is the Bayes action under the squared error loss, $L(\hat{\theta}(\mathbf{x}), \theta) = (\hat{\theta}(\mathbf{x}) \theta)^2$.
 - (b) Suppose $X_i \overset{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2), i = 1, \dots, n$. The mean μ is assumed to be known and let the prior distribution of σ^2 be the inverse gamma distribution,

$$f(\sigma^2|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{-\alpha-1} e^{-\frac{\beta}{\sigma^2}}$$

with $\alpha > 1$ and $\beta > 0$.

Find the Bayes action of σ^2 under the squared error loss.

4. Let X_{i1}, \ldots, X_{in_i} be two independent samples i.i.d. from the uniform distribution $\mathcal{U}(0, \theta_i)$, i = 1, 2, respectively, where $\theta_1 > 0$ and $\theta_2 > 0$ are unknown. Find a likelihood ratio test of size α for testing $H_0: \theta_1 = \theta_2$ versus $H_1: \theta_1 \neq \theta_2$. (Hint: find out the distribution of the likelihood ratio Λ by calculating the probability $P(\Lambda < c)$, where c is a constant).