- 1. Consider a sequence of positive random variables $\{X_n\}_{n\in\mathbb{N}}$ identically distributed (not necessarily independent) with $\mathbb{E}X_1 < \infty$.
 - (a) For each $\varepsilon > 0$, prove that

$$\frac{1}{n}\mathbb{E}\left(\max_{1\leq k\leq n}X_{k}\right)\leq\varepsilon+\mathbb{E}(X_{1}\mathbf{1}(X_{1}>\varepsilon n)),$$

where $\mathbf{1}(\cdots)$ is the indicator function.

(b) Show that

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left(\max_{1 \le k \le n} X_k \right) = 0.$$

(You may use the result of part (a) directly.)

- 2. Let $\{X_i\}_{i\in\mathbb{N}}$ be identically distributed random variables with $\mathbb{P}(X_1 > x) = e^{-x}, x > 0$, not necessarily independent.
 - (a) Show that for every $\varepsilon > 0$ we have

$$\mathbb{P}(X_n > (1 + \varepsilon) \log n \text{ i.o.}) = 0.$$

(b) Assume further that $\{X_i\}_{i\in\mathbb{N}}$ are independent. Show that

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = 1, \text{ a.s.}$$

3. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with exponential distribution: $\mathbb{P}(X_n \ge x) = e^{-\alpha x}, x \ge 0$, for some $\alpha > 0$ fixed. Find a sequence of constants $\{b_n\}_{n \in \mathbb{N}}$ such that

$$\max_{i=1,\dots,n} X_i - b_n \Rightarrow X,$$

where the limit random variable X is not degenerate. Identify the distribution of the X.

4. Let X_1, X_2, \dots be a sequence of independent random variables such that

$$\mathbb{P}(X_k = k^{-1/2}) = \frac{1}{2}$$
 and $\mathbb{P}(X_k = -k^{-1/2}) = \frac{1}{2}$.

Write $S_n = \sum_{i=1}^n X_i$.

- (a) Show that $\lim_{n \to \infty} \frac{\operatorname{var}(S_n)}{\log n} = 1 \text{ as } n \to \infty.$
- (b) Show that

$$\frac{S_n}{(\log n)^{1/2}} \Rightarrow N(0,1),$$

where N(0,1) denotes the distribution of a standard Gaussian random variable.