Full Name:
 ID Number:

Instruction: Choose only five (out of six) problems to do. Each problem is worth 20 points.

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	20	20	100
Score:							

1. [20 points] Let $U \subset \mathbb{R}^{n}, n \geq 2$, be open, bounded, and connected with C^{1} boundary. Consider the boundary value problem

$$
\left\{\begin{aligned}
\Delta u & =0 & & \text { in } U, \\
\frac{\partial u}{\partial v}+\alpha u & =\beta & & \text { on } \partial U,
\end{aligned}\right.
$$

where α and β are constants, with $\alpha>0$; and v denotes the outward unit normal vector field on the boundary ∂U. Prove that this problem has at most one smooth solution $u=u(x)$.
2. [20 points] Let Ω be the open disk $\Omega=\left\{(x, y): x^{2}+y^{2}<9\right\}$ and suppose that g is a continuous non-negative function, i.e. $g(x, y) \geq 0$, defined on the circle $\partial \Omega=\left\{(x, y): x^{2}+y^{2}=9\right\}$. Prove that there is no smooth solution of

$$
\left\{\begin{aligned}
\Delta u=0 & \text { in } \Omega \\
u=g & \text { on } \partial \Omega
\end{aligned}\right.
$$

with the values $u(0,0)=1$ and $u(0,1)=3$.
3. [20 points] Find the solution $u(x, t)$ of the following initial-value problem

$$
\left\{\begin{aligned}
u_{t t}-9 u_{x x} & =x, & & -\infty<x<\infty, \quad t>0, \\
u(x, 0) & =0, & & -\infty<x<\infty, \\
u_{t}(x, 0) & =0, & & -\infty<x<\infty .
\end{aligned}\right.
$$

4. [20 points] Let $L>0$ and $T>0$ be given. Assume that $u(x, t)$ satisfies

$$
\left\{\begin{aligned}
u_{t}-u_{x x}+c(x, t) u & \geq 0, & & 0<x<L, \quad 0<t<T, \\
u(x, 0) & \geq 0, & & 0<x<L, \\
u(0, t) & \geq 0, & & 0<t<T, \\
u(L, t) & \geq 0, & & 0<t<T,
\end{aligned}\right.
$$

where $c(x, t)$ is any function satisfying $|c(x, t)| \leq M$ for all $0<x<L$ and $0<t<T$, and some constant $M>0$. Show that

$$
u(x, t) \geq 0 \quad \text { for } 0<x<L \text { and } 0<t<T .
$$

5. [20 points] Use the method of characteristics to find the solution $u(x, t)$ of the following problem

$$
\left\{\begin{aligned}
x u_{x}+(t+1) u_{t} & =u, & & x \in \mathbb{R}, \\
u(x, 0) & =f(x), & & x \in \mathbb{R} .
\end{aligned}\right.
$$

6. [20 points] Find the entropy solutions of the following problems

$$
\left\{\begin{aligned}
u_{t}+u^{5} u_{x} & =0, \\
u(x, 0) & =g(x),
\end{aligned}\right.
$$

with
(a) $g(x)= \begin{cases}3, & x<0, \\ 1, & x>0 .\end{cases}$
(b) $g(x)= \begin{cases}1, & x<0, \\ 3, & x>0 .\end{cases}$

