Department of Mathematical Sciences	$4^{\text {th }}$ Floor French Hall West	
PO Box 210025	Phone	$(513) 556-4050$
Cincinnati OH 45221-0025	Fax	$(513) 556-3417$

MATHEMATICS QUALIFYING EXAM, MAY 6, 2022

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers, \mathbb{R}^{n} is n-dimensional Euclidean space with the usual dot product $\vec{u} \cdot \vec{v}=\sum_{j=1}^{m} u_{i} v_{i}, \mathcal{M}_{m \times n}$ are m by n matrices with real entries. Proofs, or counter examples, are required for all problems.

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be two sequences of real numbers such that for each integer $n \geq 2$ we have $\left|a_{n}-b_{n}\right| \leq 2^{-n}$. Prove that the limit $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if the $\operatorname{limit}^{\lim }{ }_{n \rightarrow \infty} b_{n}$ exists.
2. Prove that the series $\sum_{n=1}^{\infty} \frac{\sin (\pi n / 2)}{n}$ is convergent. Also explain whether it is absolutely convergent.
3. For $x \in \mathbb{R}$, let

$$
f_{\alpha}(x):= \begin{cases}|x|^{\alpha} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(a) For what $\alpha>0$ is f_{α} differentiable on $\mathbb{R} \backslash\{0\}$? Justify your answer.
(b) For what $\alpha>0$ is f_{α} differentiable at 0 ? Justify your answer.
4. Let $h:(-1,1) \rightarrow \mathbb{R}$ be a differentiable function such that its derivative function h^{\prime} is Riemann integrable on the interval $[-t, t]$ for each $0<t<1$. We define $H:(-1,1) \rightarrow \mathbb{R}$ by setting

$$
H(x)= \begin{cases}\int_{0}^{x} h^{\prime}(s) d s & \text { if } x>0 \\ -\int_{x}^{0} h^{\prime}(s) d s & \text { if } x<0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that there is some real number C such that for each $x \in(-1,1)$ we have $H(x)=h(x)+C$.
5. Let \mathcal{L} be the set of all 2×2 real matrices with trace zero, and let

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

(a) Show that $\mathcal{B}=\{H, E, F\}$ is a basis of \mathcal{L}.
(b) For $A, B \in \mathcal{L}$, denote

$$
[A, B]=A B-B A
$$

Show that $X \mapsto[H, X]$ is linear on \mathcal{L} and find its matrix expression in terms of \mathcal{B}.
6. Suppose that $A \in \mathcal{M}_{n \times n}$ is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots 0 & 0 & -a_{0} \\
1 & 0 & 0 & \ldots 0 & 0 & -a_{1} \\
0 & 1 & 0 & \ldots 0 & 0 & -a_{2} \\
0 & 0 & 1 & \ldots 0 & 0 & -a_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots 1 & 0 & -a_{n-2} \\
0 & 0 & 0 & \ldots 0 & 1 & -a_{n-1}
\end{array}\right]
$$

Prove that the characteristic polynomial is given by $\operatorname{det}(\lambda I-A)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}$.
7. Let \mathcal{C} be the space of all real continuous functions on $[-\pi, \pi]$.
(a) Verify that $\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x$ defines an inner product on \mathcal{C} with the corresponding norm $\|f\|=\sqrt{\langle f, f\rangle}$.
(b) Consider a three dimensional subspace \mathcal{T} of \mathcal{C} spanned by the functions $1, \sin x, \cos x$. Determine the function $t \in \mathcal{T}$ which is closest to the function

$$
f(x)= \begin{cases}x & x \geq 0 \\ 0 & x<0\end{cases}
$$

That is, use linear algebra to find function $t \in \mathcal{T}$ that achieves the minimum of $\|t-f\|^{2}$.
8. Let $B_{1}(0)$ denote the open unit ball in \mathbb{R}^{2}. Suppose $f: B_{1}(0) \rightarrow \mathbb{R}$ is continuously differentiable and that its gradient satisfies $\nabla f(x, y) \cdot(x, y) \geq 0$ for all $(x, y) \in B_{1}(0)$.

Prove that $f(0,0)$ is the absolute minimum of f on $B_{1}(0)$.

