

MATHEMATICS QUALIFYING EXAM, MAY 6, 2022

Four Hour Time Limit

In this exam \mathbb{R} denotes the field of all real numbers, \mathbb{R}^n is *n*-dimensional Euclidean space with the usual dot product $\vec{u} \cdot \vec{v} = \sum_{i=1}^m u_i v_i$, $\mathcal{M}_{m \times n}$ are *m* by *n* matrices with real entries. Proofs, or counter examples, are required for all problems.

- **1.** Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be two sequences of real numbers such that for each integer $n \ge 2$ we have $|a_n b_n| \le 2^{-n}$. Prove that the limit $\lim_{n\to\infty} a_n$ exists if and only if the limit $\lim_{n\to\infty} b_n$ exists.
- 2. Prove that the series $\sum_{n=1}^{\infty} \frac{\sin(\pi n/2)}{n}$ is convergent. Also explain whether it is absolutely convergent.
- **3.** For $x \in \mathbb{R}$, let

$$f_{\alpha}(x) := \begin{cases} |x|^{\alpha} \sin\left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

- (a) For what $\alpha > 0$ is f_{α} differentiable on $\mathbb{R} \setminus \{0\}$? Justify your answer.
- (b) For what $\alpha > 0$ is f_{α} differentiable at 0? Justify your answer.
- 4. Let $h : (-1,1) \to \mathbb{R}$ be a differentiable function such that its derivative function h' is Riemann integrable on the interval [-t,t] for each 0 < t < 1. We define $H : (-1,1) \to \mathbb{R}$ by setting

$$H(x) = \begin{cases} \int_0^x h'(s) \, ds & \text{if } x > 0, \\ -\int_x^0 h'(s) \, ds & \text{if } x < 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that there is some real number C such that for each $x \in (-1, 1)$ we have H(x) = h(x) + C.

5. Let \mathcal{L} be the set of all 2×2 real matrices with trace zero, and let

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

- (a) Show that $\mathcal{B} = \{H, E, F\}$ is a basis of \mathcal{L} .
- (b) For $A, B \in \mathcal{L}$, denote

$$[A,B] = AB - BA.$$

Show that $X \mapsto [H, X]$ is linear on \mathcal{L} and find its matrix expression in terms of \mathcal{B} . 6. Suppose that $A \in \mathcal{M}_{n \times n}$ is

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & 0 & -a_2 \\ 0 & 0 & 1 & \dots & 0 & 0 & -a_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & -a_{n-2} \\ 0 & 0 & 0 & \dots & 0 & 1 & -a_{n-1} \end{bmatrix}$$

Prove that the characteristic polynomial is given by $\det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$.

- 7. Let \mathcal{C} be the space of all real continuous functions on $[-\pi,\pi]$.
 - (a) Verify that $\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx$ defines an inner product on \mathcal{C} with the corresponding norm $||f|| = \sqrt{\langle f, f \rangle}$.
 - (b) Consider a three dimensional subspace \mathcal{T} of \mathcal{C} spanned by the functions $1, \sin x, \cos x$. Determine the function $t \in \mathcal{T}$ which is closest to the function

$$f(x) = \begin{cases} x & x \ge 0, \\ 0 & x < 0. \end{cases}$$

That is, use linear algebra to find function $t \in \mathcal{T}$ that achieves the minimum of $||t - f||^2$.

8. Let $B_1(0)$ denote the open unit ball in \mathbb{R}^2 . Suppose $f: B_1(0) \to \mathbb{R}$ is continuously differentiable and that its gradient satisfies $\nabla f(x, y) \cdot (x, y) \ge 0$ for all $(x, y) \in B_1(0)$.

Prove that f(0,0) is the absolute minimum of f on $B_1(0)$.