Statistical Methods Prelim Exam

1:00 pm - 3:30 pm, Thursday, May 5, 2022

UMVUE: uniformly minimum variance unbiased estimator

UMP: uniformly most powerful

- 1. Let X_1, X_2, \ldots, X_n be a random sample of binary random variables with $P(X_i = 1) = p, i = 1, \ldots, n$ and 0 .
 - (a) Show that UMVUE of p(1-p) is $T_n = n\bar{X}(1-\bar{X})/(n-1)$.
 - (b) Derive the asymptotic distribution of T_n .
 - (c) Let $[p(1-p)]^{-1}I(0 be an improper prior density for <math>p$. Provided that the sample mean $\bar{X} \in (0,1)$, find the Bayes estimator of p(1-p) under this improper prior and the squared error loss.
 - (d) Discuss the bias and consistency of the Bayes estimator obtained in Part (c).
- 2. Consider the following density function

$$f(x,y;\sigma) = \frac{\sigma^2}{\pi\sqrt{3}} \exp\left\{-\frac{2\sigma^2}{3}[x^2 + y^2 - xy]\right\}$$

for $(x, y) \in \mathbb{R}^2$, where $\sigma(> 0)$ is the unknown parameter.

- (a) Suppose that (X, Y) has the pdf $f(x, y; \sigma)$. Then, derive the UMP level α test for $H_0 : \sigma = 1$ versus $H_1 : \sigma > 1$ in its simplest implementable form.
- (b) Obtain explicitly the final expression of the power function for the test in Part (a) that does not involve any integral.
- 3. Let X_1, \ldots, X_m be identically and independently distributed (i.i.d.) as the $\mathcal{N}(\mu_x, \sigma_x^2)$ distribution and let Y_1, \ldots, Y_n be i.i.d. having the $\mathcal{N}(\mu_y, \sigma_y^2)$ distribution. Assume that X_i 's and Y_j 's are independent.
 - (a) Assume that $\mu_x \in \mathcal{R}, \ \mu_y \in \mathcal{R}, \ \sigma_x^2 > 0$, and $\sigma_y^2 > 0$. Find the UMVUE's of $\mu_x \mu_y$ and $(\sigma_x/\sigma_y)^r, r > 0$.
 - (b) Assume that $\mu_x \in \mathcal{R}, \ \mu_y \in \mathcal{R}, \ \sigma_x^2 = \sigma_y^2 = \sigma^2 > 0$. Find the UMVUE's of σ^2 and $(\mu_x \mu_y)/\sigma$.
- 4. Let X_1, X_2, \ldots, X_n be i.i.d from a two-parameter exponential distribution $\mathcal{E}(a, b)$ with the density function as

$$f(x|a,b) = \frac{1}{b} \exp\left[-\frac{1}{b}(x-a)\right], \quad x > a, \quad b > 0.$$

- (a) Suppose that b is known. Find a likelihood ratio test of size α for testing $H_0: a = a_0$ versus $H_1: a \neq a_0$.
- (b) Suppose both b and a are unknown. Find a likelihood ratio test of size α for testing $H_0: b = b_0$ versus $H_1: b \neq b_0$.

Hint: You might need the following results in Parts (a) and (b):

- i. When b is known, the distribution of $n[X_{(1)} a]/b$ is the standard exponential distribution $\mathcal{E}(0, 1)$, where $X_{(1)}$ is the minimum order statistic.
- ii. When both b and a are unknown, $X_{(1)}$ and $\sum [X_i X_{(1)}]$ are jointly sufficient and complete. They are independently distributed as

$$n[X_{(1)} - a]/b \sim \mathcal{E}(0, 1),$$

 $2\sum_{i=1}^{n} [X_i - X_{(1)}]/b \sim \chi^2_{2(n-1)}.$