Statistics Qualifying Exam

$$
\text { 12:00 pm - 4:00 pm, Monday, August } 20^{\text {th }}, 2018
$$

1. Suppose that $X_{i}, i=1, \ldots, m$, independently follows the binomial distribution $b\left(n_{i}, p\right)$ with the probability mass function,

$$
f_{X_{i}}\left(x_{i}\right)=\binom{n_{i}}{x_{i}} p^{x_{i}}(1-p)^{n_{i}-x_{i}}, \quad x_{i}=0,1, \ldots, n_{i} .
$$

Note that $X_{1}, X_{2}, \ldots, X_{m}$ are independent, but they are not identically distributed, i.e., the parameters n_{i} are different.
(a) Find the moment generating function (mgf) of X_{i}.
(b) Let $Y=\sum_{i=1}^{m} X_{i}$. Then, prove that Y follows the binomial distribution $b(t, p)$ where

$$
t=\sum_{i=1}^{m} n_{i} .
$$

2. Let X_{1} and X_{2} have the joint probability density function (pfd) as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2 \exp \left(-x_{1}-x_{2}\right), \quad 0<x_{1}<x_{2}<\infty, \text { zero elsewhere. }
$$

(a) Find the marginal pdf of X_{1}.
(b) Let $Y_{1}=2 X_{1}$ and $Y_{2}=X_{2}-X_{1}$. Find the joint pdf of the random vector $\left(Y_{1}, Y_{2}\right)$.
(c) Find the conditional expectation of Y_{1} given Y_{2}, that is, $\mathrm{E}\left(Y_{1} \mid Y_{2}\right)$.
3. Let X_{1}, \ldots, X_{n} be a random sample from a $\operatorname{Gamma}(\alpha=3, \beta=\theta)$ distribution, where θ is an unknown parameter with $0<\theta<\infty$. The pdf of the $\operatorname{Gamma}(\alpha=3, \beta=\theta)$ distribution is specified as

$$
f\left(x_{i} \mid \theta\right)=\theta^{-3} x_{i}^{2} \exp \left(-\frac{x_{i}}{\theta}\right) / \Gamma(3), \quad 0<x_{i}<\infty
$$

(a) Show that the exact Likelihood Ratio test of the hypotheses $H_{0}: \theta=\theta_{0}$ versus H_{1} : $\theta \neq \theta_{0}$ is based upon the statistic $W=\sum_{i=1}^{n} X_{i}$. Obtain the null distribution of $2 W / \theta_{0}$.
(b) For $\theta_{0}=3$ and $n=5$, find c_{1} and c_{2} so that the test that rejects H_{0} has a significant level of 0.05 .
(c) Obtain the power function of the test obtained in (a)-(b) with $\theta_{0}=3$ and $n=5$.
4. Let X_{1}, \ldots, X_{n} be a random sample from the beta distribution $\operatorname{Beta}(\theta, 1)$ with the pdf as

$$
f\left(x_{i} \mid \theta\right)=\theta x_{i}^{(\theta-1)}, \quad 0<x_{i}<1, \quad \theta>0
$$

(a) Find the maximum likelihood estimator (MLE) of $1 / \theta$. Is it unbiased?
(b) Calculate the information inequality lower bound of the MLE obtained in Part (a) and check whether it achieves the lower bound.
(c) Find a complete sufficient statistic for θ.
5. Consider the general linear regression model $\mathbf{y}=\mathbf{X} \beta+\epsilon$ where \mathbf{y} ia a $n \times 1$ vector of response, $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p-1}\right)^{T}$ is a $p \times 1$ vector of parameters, \mathbf{X} is a $n \times p$ full rank matrix of predictor variables and ϵ is a $n \times 1$ vector of independent normal random variables with its expectation $\mathbf{0}_{n \times 1}$ and variance-covariance matrix $\sigma^{2} \mathbf{I}_{n}$.
(a) Derive the normal equation for the least square (LS) estimation of β and find the LS estimator, $\hat{\beta}$, of β.
(b) Show that $E(\hat{\beta})=\beta$ and $\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.
(c) Show that the residual, $\mathbf{e}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y}$ and its variance $\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)$ where $\mathbf{H}=$ $\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$.
(d) Show that, for $i \neq j, e_{i}$ and e_{j} are NOT independent each other where $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)^{T}$.
6. Consider the following ANOVA table for the multiple linear regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\epsilon
$$

where the error term ϵ are independent and identical normal random variables with mean 0 and variance σ^{2}.

Source	SS	df	MS
Model	2176606	3	725535
X_{1}	136366	1	136366
$X_{2} \mid X_{1}$	2033565	1	2033565
$X_{3} \mid X_{1}, X_{2}$	6675	1	6675
Error	985530	48	20532
Total	3162136	51	

(a) Find $\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right)$.
(b) For the model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\epsilon$, test the following hypothesis: $H_{0}: \beta_{2}=\beta_{3}=0$ versus $H_{1}:$ not both β_{2} and $\beta_{3}=0$. Use $\alpha=0.05$.
(c) Compute the coefficient of partial determination between Y and X_{2} given that X_{1} is in the model,
i.e., $R_{Y 2,3 \mid 1}^{2}$. Interpret the result.
(d) With the given information, can a best multiple linear regression model be selected using a forward selection procedure for this application? If yes, show your detailed procedure; if not, justify your answer.

Important \mathbf{t} - and \mathbf{F}-values for Problems 7-8:

$F_{0.05,2,12}=3.89, F_{0.05,2,17}=3.59, F_{0.05,1,12}=4.75, F_{0.05,1,17}=4.45, F_{0.05,1,16}=4.49$, $F_{0.05,1,23}=4.28, t_{0.05,12}=2.179, t_{0.05,16}=2.120, t_{0.01,16}=2.921, t_{0.01,12}=3.055$.
7. A textile company weaves a fabric on a large number of looms. It would like the looms to be homogeneous so that it obtains a fabric of uniform strength. The process engineer suspects that, in addition to the usual variation in strength within samples of fabric from the same loom, there may also be significant variations in strength between looms. To investigate this, she selects four looms at random and makes four strength determinations on the fabric manufactured on each loom. This experiment is run in random order, and the data obtained are shown in Table bellow:

	Observations: $y_{i j}$					
Looms	1	2	3	4	Mean: $\bar{y}_{i .}$	
1	98	97	99	96	$390 / 4$	
2	91	90	93	92	$366 / 4$	
3	96	95	97	95	$383 / 4$	
4	95	96	99	98	$388 / 4$	

(a) What type of design is this? Write down the model with all the assumptions.
(b) Find the values for A, B and C in the ANOVA table bellow.

Source	DF	Sum of Squares	Mean Square	F-Value	Pr $>\mathrm{F}$
Model	3	C	B	D	E
Error	$? ?$	A	1.8958333		
Total	$? ?$	111.9375000			

(c) Is there significant variability due to Loom Differences (use $\alpha=0.05$)?
(d) Estimate all variance components.
(e) If the overall goal of the company is to produce fabric with a mean of at least 95 . Test if they can support this claim from study conducted.
8. An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle (C) on the life (in hours) of a machine tool. Tow levels of each factor are chosen, and three replicates of a 2^{3} factorial design are run. The results follow:

	factor	replicate			
A	B	C	I	II	III
-	-	-	22	31	25
+	-	-	32	43	29
-	+	-	35	34	50
+	+	-	55	47	46
-	-	+	44	45	38
+	-	+	40	37	36
-	+	+	60	50	54
+	+	+	39	41	47

(a) Write down the statistical model of the above experiment with the associated assumptions and constrains.
(b) Estimate the main effect of B.
(c) Please complete the missing values for the degrees of freedom (DF) and Type I SS in the following tables indicated by "???".

		Sum of
Source	DF	Squares
Model	$? ? ?$	$? ? ?$
\quad Error	16	482.66666
Corrected Total	$? ? ?$	2195.333333
Source	Type I SS	DF
A	0.6666667	
B	770.6666667	
C	$? ? ?$	
AB	16.6666667	
AC	468.1666667	
BC	48.167	
ABC	$? ? ?$	

(d) Discuss the statistical significance of all the main effects and interactions based on the ANOVA table (including interaction effects and main effects when meaningful). Use $\alpha=0.01$ in the hypothesis testing.
(e) Estimate a 98% confidence interval for $\mu_{1 . .}-\mu_{2 . .}$. Interpret it.

