August 2024

Statistics Qualifying Examination

Answer all questions and show all work. This exam is closed-note/book. You need to use a calculator.

- 1. Let X_1, X_2, X_3 be iid with common probability density function (pdf) $f_{X_j}(x) = e^{-x}$ if x > 0 and zero elsewhere, for j = 1, 2, 3.
 - (a) Find the joint pdf of $Y_1 = X_1$, $Y_2 = X_1 + X_2$, and $Y_3 = X_1 + X_2 + X_3$.
 - (b) Find the conditional joint pdf of Y_1 and Y_2 given $Y_3 = y_3$.
- 2. Answer the following questions:
 - (a) Let X follow the chi-square distribution with k degrees of freedom. Derive the moment generating function of X, and use it to find the mean and variance of X.
 - (b) Let X_1 follow the chi-square distribution with r_1 degrees of freedom. Let X_2 be a random variable independent of X_1 , and its pdf is unknown. Let $Y = X_1 + X_2$ and we find that Y follows the chi-square distribution with r degrees of freedom where $r_1 < r$. Show that X_2 has a chi-square distribution with $r r_1$ degrees of freedom.
- 3. Let X_1, \ldots, X_n be a random sample from a binomial distribution with the probability mass function as $P(X = x) = {n \choose x} p^x (1-p)^{n-x}, x = 0, 1, 2, \ldots, n$ and 0 .
 - (a) Find the maximum likelihood estimator (MLE) \hat{p} of p.
 - (b) Is the MLE \hat{p} an efficient estimator of p? Clearly justify your answer.
 - (c) Find the MLE $\hat{\tau}$ of $\tau = P(X \le 1)$.
- 4. Let X_1, \ldots, X_n be a random sample from a $Gamma(3, \theta)$ distribution, where $0 < \theta < \infty$.
 - (a) Find the exact likelihood ratio test of size α for testing the hypotheses $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Clearly state the likelihood ratio, the rejection region and the decision rule.

- (b) For $\theta_0 = 3$ and n = 5, specify the rejection region so that the test that rejects the null hypothesis has a significant level 0.05.
- (c) Obtain the power function of the test in (a) with $\theta_0 = 3$, n = 5 and $\alpha = 0.05$.
- 5. A simple linear regression model is specified and fit: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, i = 1, ..., n. We assume that ϵ_i 's follow $N(0, \sigma^2)$ independently. Use the partially complete output below to answer questions.

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	***	***	***	***	***
Error	14	***	0.399		
Corrected Total	***	89.696			

Parameter Estimates

Variable Intercept X	Paramo DF 1 1	eter St Es	andard stimate 0.9798 8.3088	Error *** ***	t Value *** ***	Pr > t 0.011 ***
=	df	13	14	15	16	=
-	$t_{0.025;df}$	2.1604	2.1448	2.1315	5 2.1199	_
=	$t_{0.05;df}$	1.7709	1.7613	1.7531	1.7459	_

- (a) Calculate R^2 .
- (b) Conduct an F test to decide whether or not there is a significant linear association between X and Y. Use $\alpha = 0.05$. To get full credit, you need to give the hypotheses, test statistic, degrees of freedom, (range of) p-value, and your conclusion.
- (c) Construct a 95% confidence interval for β_1 .
- 6. The electric power consumed each month by a chemical plant is thought to be related to the average ambient temperature X_1 , the number of days in the month X_2 , the average product purity X_3 , and the tons of product produced X_4 . The past year's historical data are available. Consider all 4 explanatory variables as covariates in the multiple regression model with normal errors. The sample size is n = 12. Use the following output to answer the questions.

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model		4957.24074			
Error					
Corrected Total		6656.25000			

Parameter Estimates

	Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-102.71324	207.85885	-0.49	0.6363
x1	1	0.60537	0.36890	1.64	0.1448
x2	1	8.92364	5.30052	1.68	0.1361
x3	1	1.43746	2.39162	0.60	0.5668
x4	1	0.01361	0.73382	0.02	0.9857

Number in

Model R	R-Square	C(p)	AIC	1	MSE	SS	E Vari	ables in	Model	
1	0.6446	1.7471	67.4074	236.5	57679	2365.7678	86 x2			
1	0.5647	3.9371	69.8397	289.7	73308	2897.3307	'9 x1			
1	0.0024	19.3586	79.7922	664.0)3676	6640.3676	5 x3			
1	0.0001	19.4218	79.8198	665.5	56870	6655.6869	95 x4			
2	0.7314	1.3665	66.0471	198.6	6239	1787.9614	8 x1 x	x2		
2	0.6463	3.6989	69.3479	261.5	56262	2354.0636	50 x2 x	:3		
2	0.6447	3.7437	69.4032	262.7	7130	2364.9416	59 x2 x	<u>.</u> 4		
2	0.6412	3.8385	69.5194	265.3	32872	2387.9584	5 x1 x	x3		
3	0.7447	3.0003	67.4353	212.3	88659	1699.0927	'4 x1 x	x2 x3		
3	0.7316	3.3612	68.0386	5 223.3	3621	1786.6897	'0 x1 x	x2 x4		
3	0.6466	5.6930	71.3406	5 294.0)7956	2352.6364	7 x2 x	x3 x4		
3	0.6414	5.8343	71.5143	298.3	86753	2386.9402	25 x1 x	x3 x4		
4	0.7447	5.0000	69.4347	242.7	/1561	1699.0092	26 x1 x	x2 x3 x4		
(df_1, df_2)	(1,7)	(1,8)	(1,9)	(1,10)	(1,11)	(2,7)	(2,8)	(2,9)	(2,10)	(2,11)
$F_{0.1;df_1,df_2}$	3.5894	3.4579	3.3603	3.2850	3.2252	3.2574	3.1131	3.0065	2.9245	2.8595
$F_{0.05;df_1,df}$	5.5914 5.5914	5.3177	5.1174	4.9646	4.8443	4.7374	4.4590	4.2565	4.1028	3.9823
$F_{0.25;df_1,df}$	8.0727 8.0727	7.5709	7.2093	6.9367	6.7241	6.5415	6.0595	5.7147	5.4564	5.2559

(a) In the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$, test $H_0 : \beta_2 = 0$ vs. $H_a : \beta_2 \neq 0$. To get full credit, give the test statistic, degrees of freedom, (range of) p-value, and your conclusion. Use $\alpha = 0.05$.

- (b) In the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$, test $H_0 : \beta_1 = \beta_3 = 0$ vs. H_a : Not H_0 . To get full credit, give the test statistic, degrees of freedom, (range of) p-value, and your conclusion. Use $\alpha = 0.05$.
- (c) Pick the best model and explain your choice.
- (d) Build a regression model with the forward procedure using $\alpha = 0.05$.
- 7. The following data are the treatment means and variance from an experiment where each treatment was randomly and equally allocated to a total of 32 experimental units.

Trt	1	2	3	4
Mean	3	0	1	2
Variance	5	7	6	7

Suppose the experimenter planned to test the following three hypotheses

- (i) $H_o: 3\mu_2 = \mu_1 + 2\mu_4$
- (ii) $H_o: 2\mu_2 = \mu_1 + \mu_3$
- (iii) $H_o: \mu_3 = \mu_1$
- (iv) $H_o: \mu_2 = -2\mu_1 + \mu_3$

Answer the following questions:

- (a) Calculate the MSE (Mean Square Error).
- (b) Using $\alpha = 0.05$, test each of the four hypotheses (two sided).
- (c) Which of the four linear combinations of means are contrasts? Why?
- (d) Are any pairs of contrasts orthogonal? Which ones and why?
- (e) Find one contrast that is orthogonal to the first contrast (i).

df	27	28	29	30	31
$t_{0.025;df}$	2.0518	2.0484	2.0452	2.0423	2.0395
$t_{0.05;df}$	1.7033	1.7011.	1.6991	1.6973	1.6955

	Diet									
Breed-Litter	1	2	3	4	5	6	Litter Mean			
1		32.6	35.2			42.2	36.67			
2	40.1	38.16	40.9				39.70			
3			34.6	37.5		34.3	35.47			
4	44.9		43.9		40.8		43.2			
5			40.9	37.3	32.0		36.73			
6		37.3			40.5	42.8	40.20			
7	45.2	40.6		37.9			41.23			
8	44.0				38.5	51.9	44.80			
9		30.6		27.5	20.6		26.23			
10	37.3			42.3		41.7	40.43			
Diet Total	211.5	179.2	195.5	182.5	172.4	212.9				
Diet Mean	42.3	35.84	39.1	36.5	34.48	42.58	38.47			

Table 1: Weight Gain of Rabbits Under Six Diets

- 8. A study of the difference of 6 proposed Diets on the weight gain of young rabbits is proposed. Because weight varies considerably amongest young rabbits, it is proposed to block the experiment based on the ten available breeds. For the 10 breeds, there is 1 litters of rabbits available of varying sizes. The minimum litter size for the 10 breeds is 3. Therefore, only 3 of the 6 diets can be observed in any particular breed-litter. The design was applied as shown in Table 1 with data from this experiment. Answer the following questions.
 - (a) Verify that this is a balanced incomplete block design (BIBD) also find the parameters of BIBD.
 - (b) Write a mathematical model to describe the above experiment. Completely identify all terms in your model and include all conditions (constraints or distributional) placed on the terms in the model.
 - (c) Test if there is a difference between the six Diets. (Based on the partial SAS output (D=Diet, L=Litter) on the next page or calculating by hand).
 - (d) Obtain the estimate of treatment mean for Diet 4 (i.e., the least square mean). (Based on the partial SAS output (D=Diet, L=Litter) or calculating by hand)

The GLM Procedure

Class L D	Leve	els Value 10 L1 L 6 D1 D2	es LO L2 2 D3	L3 L4 L5 L6 L7 D4 D5 D6	L8 L9		
Number of	5 Observa	tions Read		60			
Number of	6 Observa	tions Used		30			
		37					
Dependent	variable	9: Y		Sum of			
Source		1)F	Squares	Mean Square	F Value	Pr > F
Model		,	+	889, 113889	*	*	0.0005
Error		,	÷	*	*		0.0000
Corrected	l Total	د	ł	1039.886667			
Source		1	ንድ	Tune I SS	Mean Square	F Value	PrゝF
D		1	*	293 3786667	58 6757333	5 84	0 0035
D T			*	*	*	*	*
Г							
Source		1	DF	Type III SS	Mean Square	F Value	Pr > F
D			*	158.7272222	31.7454444	3.16	0.0382
L			*	*	*	*	*
				Ctondoud			
Dememortes	-	Estimo		Standard	+ Volue		
Tarameter	-	21 022222	ле По со	C E0062127	t value	Pr > [L]	
Intercept	, 1	-2 200000		2.00000107	12.30	<.0001 0 1617	
ע ת		-5.300000		2.24102032	-2.25	0.1017	
ע ת	צע פת	-2.000000		2.24102032	-2.25	0.0400	
ע ת	D3 N4	-2.3000000	ם כמ	2.24102052	-1.29	0.2104	
ע ת		-9 525000		2.24102052	-2.80	0.1090	
ם	DG	0.000000		2.24102002	5.00	0.0017	
D T	D0 т 1	7 480555	56 B	2 7960/1///	2.68		
T	цт 110	10 777777	78 B	2.79604144	2.00	0.0016	
T	10	11 613888	SO B	2.79604144	J.05 / 15	0.0010	
T	13	5 677777	78 B	2.79604144	4.13	0.0000	
T	I.O I.A	16 275000		2.79604144	5 82	< 0001	
T	15	9 786111	11 R	2.73004144	3 63	0.0025	
L.	L6	12 888888	39 R	2.00400290	4 78	0.00020	
L.	1.7	13 258333	3 R	2.00400290	4 92	0 0002	
I.	L8	16 908333	33 R	2.00400200	6 05	< 0001	
T	10	0 000000)0 R	2.10004144	0.00		
	10	0.000000		•	•	•	