Statistics Prelim Exam, Linear Models part

12:00 pm - 2:30 pm, Wednesday, May 1, 2024

Q1 counts for 60 points and Q2, 40 points. Answer questions with showing all of your work.

1. (60 points) We condier a linear model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)^{\prime}$, $\boldsymbol{\beta}=\left(\mu, \tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)^{\prime}$,

$$
\boldsymbol{X}=\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & -1 \\
1 & 1 & 0 & -1 & 0 \\
1 & 1 & 0 & 0 & -1 \\
1 & 1 & -1 & 0 & 0
\end{array}\right) \quad \text { and } \quad \varepsilon \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

(a) Find the rank of \boldsymbol{X}^{\prime}.
(b) Show that $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}=-\tau_{1}-\tau_{2}+\tau_{3}+\tau_{4}$ is an estimable function of $\boldsymbol{\beta}$.
(c) Express the best linear unbiased estimator (BLUE) of $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$ with regard to $\boldsymbol{y}, \boldsymbol{X}$ and $\boldsymbol{\lambda}$.
(d) What is the rank of $\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{\prime}$? Justify your answer in details.
(e) Prove that MSE $=\frac{1}{2}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})$ is unbiased of σ^{2}.
(f) Find the distribution of the BLUE of $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$.
(g) Show that $100(1-\alpha) \%$ confidence interval of $\boldsymbol{\lambda}^{\prime} \boldsymbol{\beta}$ is

$$
\left(\boldsymbol{\lambda}^{\prime} \hat{\boldsymbol{\beta}}-t_{\frac{\alpha}{2}, 2} \sqrt{M S E \boldsymbol{\lambda}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{\lambda},} \quad \boldsymbol{\lambda}^{\prime} \hat{\boldsymbol{\beta}}+t_{\frac{\alpha}{2}, 2} \sqrt{M S E \boldsymbol{\lambda}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{\lambda}}\right) .
$$

Show all steps in details.
2. (40 points) Consider the linear model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ where \boldsymbol{X} is an $n \times p$ matrix with full rank and $\boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} \boldsymbol{I}\right)$. Let $\hat{\boldsymbol{\beta}}$ be the ordinary least squares estimator of $\boldsymbol{\beta}$.
The ridge regression estimator $\hat{\boldsymbol{\beta}}_{R}(\lambda)$ is the vector-value of $\hat{\boldsymbol{\beta}}$ that minimizes

$$
Q(\boldsymbol{\beta})=(\mathbf{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \boldsymbol{\beta}^{\prime} \boldsymbol{\beta}
$$

where $\lambda>0$ is a fixed real number.
(a) Find an expression for $\hat{\boldsymbol{\beta}}_{R}(\lambda)$. Show that you can write $\hat{\boldsymbol{\beta}}_{R}(\lambda)=\mathbf{W}_{\lambda} \hat{\boldsymbol{\beta}}$ for some matrix \mathbf{W}_{λ} that depends on λ and give the explicit expression for \mathbf{W}_{λ}.
(b) Find the mean, bias and variance of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$.
(c) Show that $\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{R}(\lambda)\right)<\operatorname{Var}(\hat{\boldsymbol{\beta}})$ in the sense that $\operatorname{Var}(\hat{\boldsymbol{\beta}})-\operatorname{Var}\left(\hat{\boldsymbol{\beta}}_{R}(\lambda)\right)$ is positive definite.
Hint: You may use the fact that $\boldsymbol{X}^{\prime} \boldsymbol{X}=\boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{\prime}$ where \boldsymbol{D} is a diagonal matrix with elements $d_{i}>0$ and \boldsymbol{P} is an orthogonal matrix.
(d) Show that the mean squared error of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$ is expressed by

$$
E\left\{\left(\hat{\boldsymbol{\beta}}_{R}(\lambda)-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{R}(\lambda)-\boldsymbol{\beta}\right)\right\}=\boldsymbol{\beta}^{\prime} \boldsymbol{P}^{\prime} \boldsymbol{A} \boldsymbol{P} \boldsymbol{\beta}+\sigma^{2} \boldsymbol{P} \boldsymbol{B} \boldsymbol{P}^{\prime}
$$

where

- \boldsymbol{P} is an orthogonal matrix and d_{i} is the i-th diagonal element of the matrix \boldsymbol{D} defined in part (c),
- \boldsymbol{A} is a diagonal matrix with elements $\left(\frac{\lambda}{d_{i}+\lambda}\right)^{2}$, and
$\circ \boldsymbol{B}$ is a diagonal matrix with elements $\frac{d_{i}}{\left(d_{i}+\lambda\right)^{2}}$.
(e) Assuming now that $\boldsymbol{X}^{\prime} \boldsymbol{X}=d \boldsymbol{I}_{p}$ where d is a fixed constant, find the optimum value of λ that minimizes the mean squared error of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$.

