Statistics Prelim Exam, Linear Models part

12:00 pm - 2:30 pm, Wednesday, May 1, 2024

Q1 counts for 60 points and Q2, 40 points. Answer questions with showing all of your work.

1. (60 points) We condier a linear model $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where $\boldsymbol{y} = (y_1, y_2, y_3, y_4, y_5, y_6)',$ $\boldsymbol{\beta} = (\mu, \tau_1, \tau_2, \tau_3, \tau_4)',$

$$\boldsymbol{X} = \begin{pmatrix} 1 & -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}).$$

- (a) Find the rank of X'.
- (b) Show that $\lambda' \beta = -\tau_1 \tau_2 + \tau_3 + \tau_4$ is an estimable function of β .
- (c) Express the best linear unbiased estimator (BLUE) of $\lambda'\beta$ with regard to y, X and λ .
- (d) What is the rank of $P = X(X'X)^{-}X'$? Justify your answer in details.
- (e) Prove that $MSE = \frac{1}{2}(\boldsymbol{y} \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} \boldsymbol{X}\hat{\boldsymbol{\beta}})$ is unbiased of σ^2 .
- (f) Find the distribution of the BLUE of $\lambda'\beta$.
- (g) Show that $100(1-\alpha)\%$ confidence interval of $\lambda'\beta$ is

$$\left(\boldsymbol{\lambda}'\hat{\boldsymbol{\beta}} - t_{\frac{\alpha}{2},2}\sqrt{MSE \;\boldsymbol{\lambda}'(\boldsymbol{X}'\boldsymbol{X})^{-}\boldsymbol{\lambda}}, \quad \boldsymbol{\lambda}'\hat{\boldsymbol{\beta}} + t_{\frac{\alpha}{2},2}\sqrt{MSE \;\boldsymbol{\lambda}'(\boldsymbol{X}'\boldsymbol{X})^{-}\boldsymbol{\lambda}}\right).$$

Show all steps in details.

2. (40 points) Consider the linear model $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \boldsymbol{X} is an $n \times p$ matrix with full rank and $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \boldsymbol{I})$. Let $\hat{\boldsymbol{\beta}}$ be the ordinary least squares estimator of $\boldsymbol{\beta}$.

The ridge regression estimator $\hat{\boldsymbol{\beta}}_{R}(\lambda)$ is the vector-value of $\hat{\boldsymbol{\beta}}$ that minimizes

$$Q(\boldsymbol{\beta}) = (\mathbf{Y} - \boldsymbol{X}\boldsymbol{\beta})'(\mathbf{Y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}' \boldsymbol{\beta},$$

where $\lambda > 0$ is a fixed real number.

- (a) Find an expression for $\hat{\boldsymbol{\beta}}_{R}(\lambda)$. Show that you can write $\hat{\boldsymbol{\beta}}_{R}(\lambda) = \mathbf{W}_{\lambda}\hat{\boldsymbol{\beta}}$ for some matrix \mathbf{W}_{λ} that depends on λ and give the explicit expression for \mathbf{W}_{λ} .
- (b) Find the mean, bias and variance of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$.
- (c) Show that $Var(\hat{\boldsymbol{\beta}}_{R}(\lambda)) < Var(\hat{\boldsymbol{\beta}})$ in the sense that $Var(\hat{\boldsymbol{\beta}}) Var(\hat{\boldsymbol{\beta}}_{R}(\lambda))$ is positive definite.

Hint: You may use the fact that X'X = PDP' where D is a diagonal matrix with elements $d_i > 0$ and P is an orthogonal matrix.

(d) Show that the mean squared error of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$ is expressed by

$$E\{(\hat{\boldsymbol{\beta}}_{R}(\lambda)-\boldsymbol{\beta})'(\hat{\boldsymbol{\beta}}_{R}(\lambda)-\boldsymbol{\beta})\}=\boldsymbol{\beta}'\boldsymbol{P}'\boldsymbol{A}\boldsymbol{P}\boldsymbol{\beta}+\sigma^{2}\boldsymbol{P}\boldsymbol{B}\boldsymbol{P}'$$

where

- \boldsymbol{P} is an orthogonal matrix and d_i is the *i*-th diagonal element of the matrix \boldsymbol{D} defined in part (c),
- \boldsymbol{A} is a diagonal matrix with elements $\left(\frac{\lambda}{d_i+\lambda}\right)^2$, and
- **B** is a diagonal matrix with elements $\frac{d_i}{(d_i+\lambda)^2}$.
- (e) Assuming now that $\mathbf{X}'\mathbf{X} = d\mathbf{I}_p$ where d is a fixed constant, find the optimum value of λ that minimizes the mean squared error of $\hat{\boldsymbol{\beta}}_R(\lambda)$.