Statistics Qualifying Exam

April 2014

1. Suppose that X has p.d.f. $f_{\theta}(x)=2(\theta-x) \theta^{-2}, 0<x<\theta$, where $\theta \in \mathfrak{R}^{+}$is an unknown parameter. We are given $\alpha \in(0,1)$. Use $U=/ \theta$ and derive a $100(1-\alpha) \%$ two-sided confidence interval for θ.
2. Let ${ }_{1}$ and 2 have joint p.d.f. $f\left(x_{1}, x_{2}\right)=2^{-x_{1}-x_{2}}, 0<x_{2}<x_{1}<\infty$, zero elsewhere. Find the p.d.f. of $Y=1-2$.
3. Let $1, \quad 2, \ldots ., \quad{ }_{n}$ be i.i.d. Binomial $(1, \theta)$, where $0<\theta<1$.
(a) Find a sufficient statistic for θ.
(b) Find the UMVUE of θ^{2}.
(c) Find the UMVUE of $(\theta+1)^{n}$. (Hint for (c): Look at the m.g.f. of the statistic you found in (a).)
4. Let $1,2, \ldots ., \quad n$ be i.i.d. with p.d.f. $f_{\theta}(x)=\frac{1}{\theta} \quad-x / \theta$, for $x>0$, and zero elsewhere. Here $\theta>0$.
(a) Find the best (most powerful) test for testing $H_{0}: \theta=2$, against $H_{1}: \theta=3$, at a given level of significance α. Show that the test is based on a simple statistic Y.
(b) What is the null distribution of Y, and which well-known tables must be used to carry out this test?
5. Let $\quad 1, \quad 2, \ldots ., \quad n$ be i.i.d. with the Gamma $(\alpha=2, \beta=\theta)$ distribution, where $\theta>0$.
(a) Find the MLE of θ and show it is unbiased.
(b) Is the MLE you found an efficient estimator of θ ? PLEASE SHOW AND JUSTIFY YOUR WORK!
6. The following is part of ANOVA table for a simple linear regression model $Y=\beta_{0}+$ $\beta_{1}+\epsilon$, where ϵ 's are i.i.d. from $N\left(0, \sigma^{2}\right), i=1, \ldots, n$, and n is the number of observations.
(a) Compute the coefficient of determination $\left(R^{2}\right)$. Interpret the value obtained.
(b) Assume it is known that the least square estimate of β_{1} is $b_{1}=3.57$. Construct a ttest of whether or not $\beta_{1}=3$. State the null and alternative hypotheses, the value of the test statistic, the sampling distribution under the null hypothesis and the decision rule.

Analysis of Variance					
		Sum of	Mean		
Source	DF	Squares	Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	***	******	252378	105.88	<. 0001
Error	23	******	*********		
Corrected Total	***	*******			

7. An experiment involves 3 factors (Factor A, B, and C). All factors were at two levels (1: low, 2: high), and the number of replicates for each treatment combination was $n=3$. The cell means $\left(\bar{y}_{k}\right)$) are as follows:

	Factor $\mathrm{Ck}=1)$		Factor $\mathrm{Ck}=2)$	
	Factor B $(\mathrm{j}=1)$	Factor B $(\mathrm{j}=2)$	Factor B $(\mathrm{j}=1)$	Factor B $(\mathrm{j}=2)$
Factor A $(\mathrm{i}=1)$	$\bar{Y}_{111 .}=36.1$	$\bar{Y}_{121 .}=52.3$	$\bar{Y}_{112 .}=56.5$	$\bar{Y}_{122 .}=71.9$
Factor A $(\mathrm{i}=2)$	$\bar{Y}_{211 .}=46.9$	$\bar{Y}_{221 .}=64.1$	$\bar{Y}_{212 .}=68.3$	$\bar{Y}_{222 .}=83.5$

Assume that the data were analyzed with the following fixed effects model $Y_{k l}=\mu+\alpha+\beta+\gamma_{k}+(\alpha \beta)+(\alpha \gamma)_{k}+(\beta \gamma)_{k}+(\alpha \beta \gamma)_{k}+\epsilon_{k l}$, the random errors $\epsilon_{k l} \sim N\left(0, \sigma^{2}\right)$.
(a) Fill in the numbered blanks (1) and (2) in the following ANOVA table. Show your steps.

Source	DF	SS
A	1	(1)
B	1	1539.201667
C	1	2440.166667
AB	1	0.240000
AC	1	0.201667
BC	1	2.940000
ABC	1	(2)
Error	16	53.740000
Corrected Total	23	4825.998333

(b) Given $F_{1,16,0.01}=8.53$. Discuss the significance of effects based on the above ANOVA table (including interaction effects and main effects when it is meaningful). Use $\alpha=0.01$ in the hypothesis testing for each effect.
(c) Estimate a 99\% confidence interval for $\mu_{2 . .}-\mu_{1 . .}$. Interpret it.
8. Let ${ }_{1}, \quad 2, \ldots,{ }_{n}$ denote a random sample from a $N\left(\mu_{1}, \sigma^{2}\right)$ population and $Y_{1}, Y_{2}, \ldots, Y_{m}$ denote a random sample from a $N\left(\mu_{2}, \sigma^{2}\right)$ population, σ^{2} is unknown. For testing

$$
H_{0}: \mu_{1}=\mu_{2} \quad \text { vs. } H_{1}: \mu_{1} \neq \mu_{2},
$$

the same conclusions should be obtained by the two-sample t-test and the fixed effect model. Clearly construct test procedures by these two methods and show their equivalence.
9. The following data reflect information from 17 U.S. Naval hospitals at various sites around the world. The regressors are workload variables, that is, items that result in the need for personnel in a hospital. A brief description of the variables is as follows.

Y=monthly labor-hours/1000
${ }_{1}$ =average daily patient load/100
2 =monthly X-ray exposure/1000
3 =monthly occupied bed-days/1000
${ }_{4}=$ eligible population in the area/1000
5 =average length of patient's stay, in days

The goal is to produce an appropriate model that will estimate (or predict) personnel needs for Naval hospitals. Normal linear regression models are fitted to the data.
(a) Based on the SAS output in Table 1 select the "best" model using the stepwise method. Use $\alpha=0.05$.
(b) Use the partial F-test to compare the following two models. Use $\alpha=0.05$.
$Y=\beta_{0}+\beta_{2} \quad 2+\epsilon$
$Y=\beta_{0}+\beta_{1}{ }_{1}+\beta_{2}{ }_{2}+\beta_{3}{ }_{3}+\epsilon$

Percentage Points for the F-distribution $F_{v_{1}, v_{2}, 0.05}=F^{*}$ implies $P\left(F_{v_{1}, v_{2}}>F^{*}\right)=0.05$
$F_{1,12,0.05}=4.75 ; \quad F_{1,13,0.05}=4.67 ; \quad F_{1,14,0.05}=4.60 ; \quad F_{1,15,0.05}=4.54 ; \quad F_{1,16,0.05}=4.49 ;$
$F_{2,12,0.05}=3.89 ; F_{2,13,0.05}=3.81 ; F_{2,14,0.05}=3.74 ; F_{2,15,0.05}=3.68 ; F_{2,16,0.05}=3.63$.

Table 1 SAS OUPUT for Problem 9

Number in		Adjusted		
Model	R-Square	R-Square	SSE	Variables in Model
1	0.9722	0.9703	13.76231	x3
1	0.9715	0.9696	14.09985	x 1
1	0.8934	0.8862	52.76006	x 2
1	0.8843	0.8766	57.25318	x4
1	0.3348	0.2904	329.10538	x5
2	0.9867	0.9848	6.57238	x2 x3
2	0.9861	0.9841	6.86819	x 1 x 2
2	0.9848	0.9826	7.54209	x3 x5
2	0.9840	0.9817	7.90007	x1 x5
2	0.9754	0.9718	12.19065	x3 $\times 4$
2	0.9741	0.9704	12.79853	$\mathrm{x} 1 \times 4$
2	0.9725	0.9686	13.59958	x 1 x 3
2	0.9306	0.9207	34.33937	x 2 x 4
2	0.9239	0.9130	37.63959	x2 x5
2	0.9104	0.8976	44.31986	x4 x5
3	0.9901	0.9878	4.91340	x2 x3 x5
3	0.9894	0.9870	5.24179	x1 x2 x5
3	0.9873	0.9844	6.26972	x 1 x 2 x 3
3	0.9868	0.9837	6.55484	x2 x3 x4
3	0.9861	0.9829	6.86734	x 1 x 2 x 4
3	0.9850	0.9816	7.40779	x 1 x 3 x 5
3	0.9850	0.9815	7.42033	x3 x4 x5
3	0.9847	0.9811	7.58999	$\mathrm{x} 1 \mathrm{x} 4 \times 5$
3	0.9785	0.9735	10.63777	x 1 x 3 x 4
3	0.9523	0.9412	23.61614	x2 x4 x5
4	0.9908	0.9877	4.54592	$\mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 4 \times 5$
4	0.9906	0.9875	4.64401	$\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 4 \times 5$
4	0.9905	0.9874	4.67752	x 1 x 2 x 3 x 5
4	0.9879	0.9838	5.99362	x 1 x 2 x 3 x 4
4	0.9851	0.9801	7.38889	x1 x3 x4 x5
5	0.9908	0.9867	4.53505	x1 x2 x3 x4 x5

