Statistics Qualifying Exam

1. Let $X_{1}, X_{2}, \ldots \ldots ., X_{n}$ be a random sample from the Uniform distribution in ($0, \theta$), where $\theta>0$ is an unknown parameter.
(a) Find the most powerful test for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$, at a given level of significance α. Show that the test is based on a simple statistic Y.
(b) Find explicitly the critical region when $\alpha=0.05$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the normal distribution $N(\theta, 1$, where θ is unknown.
(a) Show that there are infinitely many confidence intervals for θ at a fixed level of confidence of $100(1-\alpha) \%$. Show how to find them explicitly.
(b) Show that among all of those in (a), the confidence interval of shortest length is the (classical) confidence interval symmetric about X.
3. Let $X_{1}, X_{2}, \ldots \ldots, X_{n}$ be a random sample from the Uniform distribution in ($0, \theta$). Let $P_{n}(\theta)$ be a polynomial of degree n in θ.
(a) Find the UMVUE (uniformly minimum variance unbiased estimator) of $P_{n}(\theta)$.
(b) Find the UMVUE of $g(\theta=\cos \theta$.
4. Let X and Y be independent random variables, where X is Uniform in $(0,1)$, and Y is Uniform in ($-0.5,+0.5$).
(a) Find the joint p.d.f. of X and Y.
(b) Calculate $P(X>Y)$.
5. The normal error regression model is specified as follows:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

where β_{0} is the intercept, β_{1} is the slope, and $\epsilon_{i}{ }^{\prime} s$ are identically and independently distributed as $N\left(0, \sigma^{2}, \quad i=1, \ldots, n\right.$.
(a) Derive the maximum likelihood estimator for β_{0}, β_{1}, and σ^{2}.
(b) Derive the best linear unbiased estimator for β_{0} and β_{1}.
6. A multiple linear regression model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\epsilon$ with $\epsilon \sim N\left(0, \sigma^{2} \mathbf{I}\right.$ is fitted to a dataset (\mathbf{I} is an identity matrix).
(a) The figures below show results of residual analysis for the model (resid: residuals).

Interpret Figure 1 and Figure 2 and discuss the model fit based on these figures.
figure 1

figure 2

Refer to the SAS output from PROC REG in Table 1 and answer the following questions.
(b) Fill in the numbered blanks (1) and (2).
(c) For the full model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\epsilon$, test the following hypotheses use a given significance level α. Clearly specify the test statistic, the sampling distribution under the null hypothesis and the decision rule.

$$
H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=0 \text { versus } H_{1}: \text { not all } \beta_{2}, \beta_{3} \text {, and } \beta_{4} \text { equals } 0 .
$$

Table 1 SAS OUTPUT FOR PROBLEM 6

The REG Procedure
Model: MODEL1
Dependent Variable: Y

Number of Observations Read
81 Number of Observations Used 81

Analysis of Variance						
Source		DF	Sum of Squares	Mean Square	F Value	Pr $>\mathrm{F}$
Model		4	138.32691	34.58173	26.76	<. 0001
Error		76	98.23059	1.29251		
Corrected	Total	80	236.55750			
	Root MSE		1.13689	R-Square	0.5847	
	Dependent	Mean	15.13889	Adj R-Sq	0.5629	
	Coeff Var		7.50970			

	Parameter					Standard	
Variable	DF	Estimate	Error	t Value	Pr $>\|\mathrm{t}\|$	Type I SS	Type II SS
Intercept	1	12.20059	0.57796	21.11	$<.0001$	18564	575.97646
X1	1	-0.14203	0.02134	-6.65	$<.0001$	(1)	(2)
X2	1	0.28202	0.06317	4.46	$<.0001$	72.80201	25.75896
X3	1	0.61934	1.08681	0.57	0.5704	8.38142	0.41975
X4	1	0.00000792	0.00000138	5.72	$<.0001$	42.32496	42.32496

7. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $N\left(\mu_{1}, \sigma^{2}\right)$ population and Y_{1}, Y_{2}, \ldots, Y denote a random sample from a $N\left(\mu_{2}, \sigma^{2}\right.$ population, σ^{2} is unknown. For testing

$$
H_{0}: \mu_{1}=\mu_{2} \quad \text { versus } H_{1}: \mu_{1} \neq \mu_{2},
$$

the same conclusions should be obtained by the two-sample t-test and the fixed effect model. Clearly construct test procedures by these two methods and show their equivalence.
8. An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor are chosen. Suppose that a full replicate of the experiment cannot all be run using the same bar stock.
(a) Set up an experimental design to run the treatment combinations in two blocks of four treatment combinations each, with $A B C$ confounded.
(b) Assume the data obtained as below. Analyze the data.

Treatment Combination	(1)	a	b	$a b$	c	$a c$	$b c$	$a b c$
	22	32	35	55	44	40	60	39

